

Coordination de l’information géographique et des systèmes d’information géographique
Coordinamento dell'informazione geografica e dei sistemi d'informazione geografica

Coordination of geographic information and geographic information systems
Koordination der Geoinformation und geografischen Informationssysteme

ili2-refman_2006-04-13_e.doc

INTERLIS Version 2 –

Reference Manual

Edition 2006-04-13 (English)

Information and contact: www.interlis.ch, info@interlis.ch

Copyright © by KOGIS, CH-3084 Wabern, www.kogis.ch / www.cosig.ch

All names marked © are subject to the copyright of its respective author or producer.
Reproduction is explicitly permitted as long as the contents remain unaltered and a complete

reference to this document is stated.

This reference manual was initially drafted in German, the authors of its English version have attempted
to respect as much as possible the original text.

http://www.interlis.ch/
mailto:info@interlis.ch
http://www.kogis.ch/
http://www.cosig.ch/
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 2

Contents

Contents .. 2

List of figures... 6

Preface... 7

1 Basic principles ...10
1.1 Overview ... 10
1.2 Utilization of models .. 11
1.3 A structure of models and topics... 12
1.4 Object concept... 13

1.4.1 Objects and classes... 13
1.4.2 Extension of class and polymorphism .. 14
1.4.3 Meta models and meta objects.. 14
1.4.4 Relationships between objects .. 15
1.4.5 Baskets, replication and data transfer.. 16

1.5 View concept.. 18
1.6 Graphic concept... 18
1.7 Contracts... 19
1.8 Services, tool capacities and conformity.. 19
1.9 A small example as an introduction.. 20
1.10 How this document is structured... 21

2 Description language ...22
2.1 Syntax applied.. 22
2.2 Basic symbols of the language.. 23

2.2.1 Character codes utilized, blanks and line ends... 23
2.2.2 Names.. 23
2.2.3 Strings.. 23
2.2.4 Digits .. 24
2.2.5 Sets of properties... 24
2.2.6 Explanations ... 24
2.2.7 Special symbols and reserved words... 25
2.2.8 Comments... 25

2.2.8.1 Line comment.. 25
2.2.8.2 Block comment.. 26

2.3 Principal rule... 26
2.4 Inheritance.. 26
2.5 Models, topics, classes... 26

2.5.1 Models ... 26
2.5.2 Topics... 28
2.5.3 Classes and structures.. 29
2.5.4 Namespaces... 30

2.6 Attributes... 31
2.6.1 General comments concerning attributes .. 31
2.6.2 Attributes with domain as type... 32
2.6.3 Reference attributes .. 32
2.6.4 Structure attributes... 32

2.7 Proper relationships .. 33
2.7.1 Description of relationships .. 33

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 3

2.7.2 Force of relationship.. 35
2.7.3 Cardinality ... 35
2.7.4 Ordered relationships.. 36
2.7.5 Relationship access... 36

2.8 Domains and constants .. 36
2.8.1 Strings.. 37
2.8.2 Enumerations.. 38
2.8.3 Text orientation... 40
2.8.4 Boolean.. 40
2.8.5 Numeric data types.. 40
2.8.6 Formatted domains.. 42
2.8.7 Date and time... 43
2.8.8 Coordinates... 44
2.8.9 Domains of object identifications... 44
2.8.10 Blackboxes.. 45
2.8.11 Domains of classes and attribute paths ... 45
2.8.12 Line strings.. 46

2.8.12.1 Geometry of the line string.. 46
2.8.12.2 Line strings with straight line segments and circle arcs as predefined curve segments

... 47
2.8.12.3 Other forms of curve segments .. 49

2.8.13 Surfaces and tessellations.. 50
2.8.13.1 Geometry of surfaces... 50
2.8.13.2 Surfaces.. 53
2.8.13.3 Surfaces of a tessellation... 53
2.8.13.4 Extensibility.. 54

2.9 Units... 54
2.9.1 Base units.. 54
2.9.2 Derived units... 55
2.9.3 Combined units... 55

2.10 Dealing with meta objects .. 55
2.10.1 General comments concerning meta objects.. 55
2.10.2 Parameters.. 56

2.10.2.1 Parameters for reference and coordinate systems ... 56
2.10.2.2 Parameters of symbols .. 57

2.10.3 Reference systems.. 57
2.11 Run time parameters... 58
2.12 Constraints.. 58
2.13 Expressions .. 60
2.14 Functions... 63
2.15 Views ... 64
2.16 Graphic descriptions.. 68

3 Sequential transfer...74
3.1 Introduction... 74
3.2 General rules for the sequential transfer... 74

3.2.1 Derivation from the data model.. 74
3.2.2 Reading of extended models ... 74
3.2.3 Organization of a transfer: Preliminaries.. 74
3.2.4 Transferable objects.. 74
3.2.5 Order of objects within the data domain... 75
3.2.6 Coding of objects ... 75
3.2.7 Transfer-types... 75

3.3 XML-coding... 76
3.3.1 Introduction... 76
3.3.2 Symbol coding.. 77

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 4

3.3.3 General structure of a transfer file... 77
3.3.4 Header section... 78

3.3.4.1 Information concerning the structure of object identifications.. 79
3.3.4.2 Significance and contents of the Alias-table... 79

3.3.5 Data section.. 83
3.3.6 Coding of topics.. 83
3.3.7 Coding of classes... 84
3.3.8 Coding of views.. 85
3.3.9 Coding of relationships.. 85

3.3.9.1 Embedded relationships .. 85
3.3.9.2 Non-embedded relationships.. 85

3.3.10 Coding of graphic definitions.. 86
3.3.11 Coding of attributes.. 86

3.3.11.1 General rules for the coding of attributes.. 86
3.3.11.2 Coding of strings ... 86
3.3.11.3 Coding of enumerations... 87
3.3.11.4 Coding of numeric data types ... 87
3.3.11.5 Coding of formatted domains.. 87
3.3.11.6 Coding of blackboxes... 87
3.3.11.7 Coding of class types ... 87
3.3.11.8 Coding of attribute path types... 87
3.3.11.9 Coding of structure attributes.. 88
3.3.11.10 Coding of ordered and not-ordered substructures... 88
3.3.11.11 Coding of coordinates .. 88
3.3.11.12 Coding of line strings.. 88
3.3.11.13 Coding of surfaces and tessellations... 89
3.3.11.14 Coding of references .. 90
3.3.11.15 Coding of meta objects .. 90
3.3.11.16 Coding of the OIDType .. 90

3.4 Application of XML-tools... 91

Appendix A (normative) The internal INTERLIS-data model..92

Appendix B (normative for CH) Symbol table ...96

Appendix C (informative) A small example Roads..100

Appendix D (standard extension suggestion) Organization of object identifiers (OID)124

Appendix E (standard extension suggestion) Uniqueness of user keys.......................................127

Appendix F (standard extension suggestion) Definition of units ..130

Appendix G (standard extension suggestion) Time definitions ..132

Appendix H (standard extension suggestion) Colour definitions ...136

Appendix I (standard extension suggestion) Coordinate systems and coordinate reference
systems..143

Appendix J (standard extension suggestion) Symbology models..157

Appendix K (informative) Glossary ...164

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 5

Appendix L (informative) Index...187

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 6

List of figures

Figure 1: Data transfer between several databases via a common data model (data schema) described in a

common data description language.. 10
Figure 2: Specializing the modeling of a concept from the federal level, to cantonal (country specific) and local

level.. 11
Figure 3: Inheritance hierarchy of addresses, persons and buildings... 13
Figure 4: Up-dating of a primary database and subsequent transfer to secondary databases (a double arrow

means incremental update). .. 16
Figure 5: Graphic definitions, on one hand built upon data and views, on the other upon symbols permitting

generation of graphics (abstract diagram)... 18
Figure 6: The various ranges of application of INTERLIS. A double arrow means that data can be incrementally

transferred... 20
Figure 7: Roads - a small example.. 21
Table 1: Reserved words in INTERLIS 2. ... 25
Figure 8: Example of an enumeration... 38
Figure 9: Text orientation horizontally (HALIGNMENT) and vertically (VALIGNMENT)... 40
Figure 10: Examples of planar curve segments.. 46
Figure 11: Examples of planar sets not being curve segments (a double circle indicates "not smooth" and a

double square "not injective"). ... 46
Figure 12: Examples of planar line strings. .. 47
Figure 13: Examples of planar sets that are not line strings (the double circle means "not continuous" and the

double rhombus "not image of an interval"). ... 47
Figure 14: Examples of (planar) simple line strings.. 47
Figure 15: a) Height parameter (of arrow) may not exceed the given tolerance; b) inadmissible overlap of

polylines since another vertex is situated between vertex and intersection; c) inadmissible overlap of
polylines since there exists no common vertex. ... 49

Figure 16: Examples of surface elements.. 51
Figure 17: Examples of point sets in space, which are not surface elements (here a double circle means "not

smooth").. 51
Figure 18: Examples of surfaces in the space... 51
Figure 19: Examples of planar point sets that are not surfaces (a double circle marks a "singular point")................. 51
Figure 20: Planar surface with boundaries and enclaves.. 51
Figure 21: a) Examples of planar general surfaces; b) Examples of planar sets that are not general surfaces,

because their interior is not connected. But these planar sets can be subdivided into general surfaces
("---" shows the subdivision into surface elements and "===" the subdivision into general surfaces)....... 52

Figure 22: Different possible subdivisions of the boundary of a general surface... 52
Figure 23: Disallowed boundary configurations for tessellations.. 52
Figure 24: Individual surfaces (SURFACE).. 53
Figure 25: Tessellation (AREA). ... 53
Table 2: Unicode symbols permitted in INTERLIS and their coding... 98
Figure 26: UML-class diagram of data models..100
Figure 27: Graphic generated from graphic and data descriptions..123
Figure H.1: Suitability of different colorspaces for the purposes of INTERLIS...137
Figure H.2: The conversion of XYZ to L*a*b*..137
Figure H.3: Conversion of the cartesian L*a*b*-space to the polar form L*C*abh*ab (according to [Sangwine/Horne,

1998])...138
Figure H.4: The colorspace L*C*abh*ab functions with polar coordinates onto L*a*b*..138
Figure H.5: Calculation of color differences in the Cartesian L*a*b*-space. ...139
Figure H.6: Cartesian and polar coordinates of a color extremely far away from the zero point (conversion see

figure H.3)...139
Figure H.7: Cartesian and polar coordinates of some colors..141
Figure I.1: How to transform the earth surface into 2D horizontal coordinates..146

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 7

Preface
This reference manual has been conceived for experts concerned with information systems, especially
geo information systems or land-information-systems. Above all it ought to be of interest to authorities to
whom careful dealing with data is a main object.

In 1991 " INTERLIS – A Data Exchange Mechanism for Land-Information-Systems" was first published.
This mechanism consists of a conceptual description language and a sequential transfer format which in
particular takes into account space related data (shortly geodata), thus permitting compatibility among
various systems and long-term availability, i.e. depositing in archives and documentation of data. Making
use of INTERLIS when deciding, planning or administering processes may yield great profit. Very often –
e.g. through multiple application and uniform output of documented and verified data – major economies
can be achieved.

Five years after its publication INTERLIS, in retrospect called version 1, resp. INTERLIS 1, has come out
of its "Sleeping Beauty existence". In the meantime a considerable range of software tools has become
available to the user, making it possible to process geodata described and coded in INTERLIS. INTERLIS
has been created out of the requirements of Cadastral Surveying, but its range of applications is
considerably wider, as proved by more than a hundred data models and projects which work with
INTERLIS ten years after its publication. The standard " INTERLIS version 1" in its form of Swiss Norm
SN 612030 will remain of use for some time yet – in parallel with its successor versions.

In order to meet increased demands of our users, several extensions to INTERLIS 1 have become
necessary, e.g. incremental re-export, structural object orientation or formal description of graphic
illustration of objects. 1998 saw the beginning of a process which was to last several years and involved
the joint efforts of half a dozen experts in research, administration, counseling and software industry. Its
result is a product that may be called an extension to INTERLIS 1 and at the same time a synthesis of all
the latest concepts.

In the INTERLIS Version 2-Reference Manual we have striven to lay down only the absolute necessities;
examples and figures only appear where they may complement the concise text. In this way the
specification is clearly arranged and easy to implement. If some language elements, such as views and
graphic descriptions seem ambitious and demanding, this is in all likelihood not due to INTERLIS itself,
but to the complexity of the field. To solve this problem we rely on the following methods: good example,
basic and continued education as well as so-called "profiles", i.e. sub-quantities of well-defined INTERLIS
tool capacities.

For a general understanding of INTERLIS 2-concepts I should like to advise the reader to peruse at least
chapter 1 Basic Principles.

Extensions in INTERLIS 2 compared with INTERLIS 1

With some few exceptions the existing description language INTERLIS 1 has only been complemented
and not altered. Thus we have extended the possibilities to describe relationships between objects (actual
relationships as association class and reference attributes with REFERENCE TO. Note: The "->"-syntax
of the INTERLIS 1 relationship attribute has been given a different meaning) while taking into account that
the transition from INTERLIS 1 to 2 should be rendered as easy as possible (c f. chapter 2.7 Proper
relationships). Henceforth-proper relationships and reference attributes can, certain conditions applied,
refer to objects in other baskets. Basket is a new term for the well -known organization of objects (i.e. data
who describe reality, also called object instances or instances) in a database. We have revised the term
TABLE that has become CLASS in accordance with the changeover from relational to object-oriented
formalism. Without further specification any attribute is considered optional (OPTIONAL is omitted) and it
has to be indicated as MANDATORY. Furthermore the uniqueness key word IDENT has been renamed
UNIQUE. The new object-oriented concepts include t ransmission amongst others of topics, classes,

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 8

views, graphic descriptions and attribute value ranges. Other extensions of great importance are set data
types (LIST, BAG), constraints, data views, graphic descriptions, descriptions of units, description of meta
objects (coordinate systems and graphic symbols) and incremental re-export. Furthermore special, user-
specific extensions, such as functions and line geometries can be defined. However this will make
contracts, i.e. agreements with tool providers, necessary.

From now on the eXtensible Markup Language (XML) will take over coding for our INTERLIS 2 transfer
format. We expect XML to become internationally widespread and universally accepted and count on a
great number of compatible software products to be obtainable in the near future.

Any user well acquainted with INTERLIS 1 will not have to face many changes as long as he renounces
the use of our new concepts, such as object orientation and graphic description: his present knowledge
will be applicable in INTERLIS 2. Various tools, such as the commonly available INTERLIS 2 compiler,
will facilitate adapting to the new version. Those producers who already had flexible configuration
possibilities on their minds when implementing INTERLIS 1, as well as taking into account rules and art of
software development (e.g. modularization and abstraction), will find that their past investments will
remain of value. Thanks to universally accessible program libraries software manufacturers will be able to
concentrate fully on the integration of their systems in INTERLIS 2.

Outlook

INTERLIS 1 appeared at a time when the relational data definition language SQL-92 had not yet been
standardized and object orientation had not been talked of. It is thanks to Joseph Dorfschmied -originator
of INTERLS 1- acting with rare foresight, that some of these nowadays well established concepts already
then were introduced. Now that INTERLIS has been revised and object-oriented and specific concepts of
informatics have been included, it may be said to have achieved a new degree of maturity. Thus
INTERLIS 2 may be used already today - and not only tomorrow – as an efficient tool.

Nevertheless we are well aware of the fact, that even with INTERLIS Version 2 our quest for a universal
data description language is nowhere near its end. However any hesitation might lead to similar
consequences as the shortsighted handling of the resources of our earth. INTERLIS deserves to be
accepted not only as a data exchange format but also as an enduring tool: Thanks to INTERLIS the call
for an enduring way to deal with technology has been given a name!

Each language has to be studied and embedded in its own method. Thus it is obvious that this reference
manual will have to be followed by several user manuals.

Thanks

In his position as head of a team charged with the further development of INTERLIS and main editor of
this document, Stefan Keller (Hochschule für Technik Rapperswil, formerly Federal Directorate for
Cadastral Surveying) has fully supervised all work on INTERLIS 2 from its very beginning, and to a great
extent even after his leaving for ITR. We would like to express our thanks to him, as well as to the entire
"INTERLIS 2 hard core" for their superb and unique efforts. Members of this team are Joseph
Dorfschmied (Adasys AG), Michael Germann (infoGrips Gmbh), Hans Rudolf Gnägi (Federal Technical
Institute), Jürg Kaufmann (Kaufmann Consulting), René L'Eplattenier (Department of Environmental
Administration and Surveying, Canton of Zurich), Hugo Thalmann (a/m/t software service AG), as well as
Sascha Brawer (Adasys AG), Claude Eisenhut (Eisenhut Informatik AG) and for its coordination Rolf
Zürcher (KOGIS).

Since the beginning of 2002 all responsibility for the editing of this reference manual lies with KOGIS,
Department of coordination for geo-information and geographical information systems of the Swiss
Federation, in close cooperation with the Federal Directorate for Cadastral Surveying. Shortly after this
change a public review of the Swiss Standardization Association SNV concerning INTERLIS 2 had taken

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 9

place. 109 comments had been entered which had to be examined and possibly adapted by the
INTERLIS 2 core team over the ensuing months. This had lead to considerable changes in the language
compared to version 2.1 of October 17th, 2001 – and consequently INTERLIS 2 has internally been
version 2.2. End of November 2002 the final vote of INB/TK 151 had taken place, thereby declaring
INTERLIS 2 to be norm SN 612031. Having completed some final textual revisions this reference manual
could be handed over to the public.

Now two years later we have to attend to the first adjustments to these standards. The development of
tools (above all compiler, checker and UML-editor) as well as the implementation of a few major projects
(e.g. geocat.ch) have brought to light several errors and open points within the language, and these we
attempt to correct or specify with this internal version 2.3.

By financing experts and by supplying basic software tools KOGIS has contributed its share in the
development of this present version. We are looking forward to the development of further innovative
tools and products based upon INTERLIS.

No standard can be laid down by a group of individuals only; on the contrary it needs the help of many
specialists. We wish to express our thanks to all these professionals !

 Wabern, April 2006

 Rolf Zürcher

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 10

1 Basic principles

1.1 Overview
INTERLIS allows co-operation between information systems, especially geographic information systems
or land information systems. As its name suggests, INTERLIS stands between (inter) land information
systems. It is crucial that all systems involved have a very clear notion of these concepts that are of major
importance to their co-operation.

Figure 1: Data transfer between several databases via a common data model (data schema)

described in a common data description language.

That is why INTERLIS comprises a conceptual description language. Thanks to this language a detail of
reality may be described that is of interest for a certain application. Such a description is called
(conceptual) application model or application schema, respectively in short model or schema. Some few

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 11

concepts with strictly defined meaning will describe (i.e. model) classes of objects with their respective
characteristics and relationships. Furthermore this INTERLIS description language permits the
introduction of classes of derived objects, hence making it possible to define these as views on other
classes of objects. True as well as derived classes of objects may serve as the basis of graphic
descriptions, however INTERLIS assures a strict separation of graphic descriptions (representation
definition) and description of the under-lying data structure (data definition).

INTERLIS does not aim at any specific application. The draft takes its bearings of common object-
oriented principles, nevertheless we have tried to ascertain very good support of such concepts as are of
importance to land information systems. Thus coordinates, lines, and surfaces are data types that
represent basic constructs of INTERLIS and language elements describing precision of measurements
and units are at your disposal. Still it is possible to use INTERLIS in non-geographic applications.

Aspects which are under-lying a field of application can be described in a basic model. Subsequently this
model will be specialized according to the specific needs of a country, in further steps according to those
of a certain area (county, region or community; see figure 2). INTERLIS 2 offers two object-oriented
concepts as possible tools for this specialization: inheritance and polymorphism, thus assuring that
already set definitions need not be repeated or accidentally be made doubtful.

Figure 2: Specializing the modeling of a concept from the federal level, to cantonal (country specific)

and local level.

Extensive applications need not be defined in one single description. On the contrary, they can be split up
into several description units (models, schemas). A description unit may comprise several topics. In the
interest of the readability of such models it is also possible to define a model as a simple translation of
other models.

1.2 Utilization of models
In the first place an INTERLIS model (resp. INTERLIS schema) represents a means of communication for
users. Its language is designed in such a way as to be readable by humans. Nevertheless INTERLIS
models are precise, unequivocal and can be interpreted without any possible misunderstandings.
Therefore the textual INTERLIS language offers itself as a necessary complement to the graphic
description language Unified Modeling Language (UML, www.omg.org/uml).

But INTERLIS does not stop here: Since a model possesses a formal and clearly defined significance, it
permits the implementation of a service in a computer system to be automatically derived from this model.
For example INTERLIS comprises an XML-based transfer service, whose definitions are produced from
respective models according to their rules. The utilization of data modeling in close connection with
system neutral interface services is called model-based or model-driven architecture (see "model-driven
architecture" by OMG, www.omg.org/mda/).

http://www.omg.org/uml
http://www.omg.org/mda/
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 12

Models may be built upon common basic concepts. Since INTERLIS allows for an explicit description
through use of inheritance and polymorphism, it is obvious at any given moment, which concepts are
common and which are specific. In view of aspiring to a semantic interoperability this becomes of great
importance. For example, it offers the possibility for a transfer file of any community (town, village) to be
interpreted by its superior administration unit (county, state), without demanding a common model agreed
upon by all participants. It is sufficient that every level builds its own model upon that employed by its
superior unit.

It is conceivable and moreover desirable that new services based upon INTERLIS should be developed,
a task greatly facilitated by using a model compiler. This program reads and writes INTERLIS models,
permits necessary changes within and examines, whether models are in accordance with syntactic and
semantic conditions of INTERLIS. Amongst others this compiler can generate automatically – in
accordance with the present INTERLIS transfer service with XML – XML schema documents
(www.w3org./XML/Schema) derived from INTERLIS models. By int roducing adequate general XML-tools
it is possible to render the concrete INTERLIS/XML-files available for an even wider range of application.
As long as conditions for usage are not violated, this INTERLIS compiler is available for the producing of
new tools.

1.3 A structure of models and topics
A model (resp. a schema) describes an image of our world as it may be of significance for a specific
application. A model is a self-contained unit, which may also use or extend parts of other models. To
some extent an INTERLIS-model can be compared to modules or packages of some programming
languages.

Primarily we distinguish between models which contain only type definitions (units, value ranges,
structures) and others where data may exist. Besides their name models also contain information
regarding editor and version. All descriptions with existing data are divided into topics. This division is a
result of our conception in what organization units and by whom such data should be controlled or used. If
as a typical feature data is controlled and used by several authorities, it should be defined in various
topics. Such interdependences ought to be limited to a strict minimum. Relationships between topics
whose data are controlled by several authorities ought to be omitted wherever possible, as special efforts
to maintain consistence are inevitable. In any case cyclic dependence is excluded. Besides data
definitions as such, topics may comprise also definitions for views and graphics.

One topic may enhance another. In this way all concepts defined by the basic topic are transmitted and
can be complemented.

http://www.w3org./XML/Schema
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 13

Figure 3: Inheritance hierarchy of addresses, persons and buildings.

For example a model of some country 's Cadastral Surveying could comprise the topics "addresses" and
"buildings" (see figure 3). These concepts are independent; any relationship is established algorithmically
by way of coordinates. Individuals possess addresses; hence the person-model of this country is built
upon the national model of Cadastral Surveying, whereby the topic "Persons" depends on the topic
"Addresses" of the cadastre model.

Now it is planned to describe the inhabitants of area A more precisely than intended by the national
person-model. So area A drafts its own model, t ransferring the topic "persons" from the nation-wide
person-model and extending it.

In area B it is planned to establish an explicit relationship between buildings and addresses on one hand,
on the other the national person-model is considered inaccurate. Again the respective topics are
transferred and specialized. Both extensions are combined in one single model – the "global view" of area
B.

1.4 Object concept

1.4.1 Objects and classes
An object (otherwise called object instance or simply instance) consists of data concerning one real-world
item and can be unequivocally identified. Obviously numerous objects possess similar characteristics and
hence can be summarized. Such a set of objects (object set) with similar characteristics is called a class.
Each characteristic has at least one corresponding attribute. In INTERLIS 1 we used the term table
instead of the term class. Other expressions meaning class are: set of entities, type of entities, feature.

When describing a class we record, amongst other information, the qualities and characteristics each
object possesses. These are called attributes. Attribute values of objects cannot be chosen at random,
but must comply with certain conditions stipulated by the description of an attribute.

With regard to this, INTERLIS offers a series of basic data types (base data types, strings, numeric data
type, enumerations, Cartesian and elliptic 2D, resp. 3D coordinates), based upon which new and more
complex data structures can be defined. In order to render this statement more precise yet, numeric
attributes can be further supplied with a measuring unit and related to a reference system, coordinates
can be referred to a coordinate reference system.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 14

In general date and time are applications of formatted value domains. Since indications of time are quite
common, an individual structure has been defined for date and time (XMLTime, XMLDate and
XMLDateTime).

Besides these basic data types, an attribute may also comprise sub structures. Each of these elements of
a sub structure is to be treated as structural element that can only exist in relation to its main object and
cannot be found in any other way than by passing by this main object. The organization of structural
elements is described in a fashion similar to that of classes.

Besides the fact that all attribute values must correspond to their respective type, further conditions can
be defined. INTERLIS distinguishes between the following conditions of constraint:

• Constraints that refer to one single object. These constraints are subdivided into requirements that
must be met by each object of a class ("hard" constraints) and regulations, which in rare cases can
be violated ("soft" constraints).

• Constraints which demand the clearness of attribute combinations of all objects in one class

• Constraints which demand the existence of an attribute value in an instance of a different class
• More complicated conditions, which refer to an object set and have to be defined by means of

views.

1.4.2 Extension of class and polymorphism
Classes are either autonomous or extend (specialize, inherit) a super class, i.e. the description of a class
is either independent or contains extensions of another inherited description. An extension of class (also
called subclass) can provide further attributes and constraints, as well as heightening already accepted
conditions (data types, constraints).

Each single object belongs to exactly one class (in other words it is object instance or instance of a
class). At the same time it always meets with all the requirements of its super classes, i.e. its super
classes. Therefore there can be found, corresponding to each class, a set of objects, which are instances
of the class itself, or one of its extensions. In the case of concrete classes we usually find a smaller
subset of instances, which belongs exactly to this class.

An extended class is polymorph in relation to its super classes. Wherever instances of a super class can
be expected, instances of an extension may occur (so-called partial set polymorphism or substitution
principle). INTERLIS has been designed in such a way as to make polymorph reading possible at any
given moment. For example if a relationship to a class has been defined (c f. chapter 1.4.4 Relationships
between objects), objects of an extension have these same relationships. Complete polymorph writing is
no aim of this INTERLIS version.

Elements of sub-structures are no independent objects, but structural elements and therefore do not form
part of the set of instances of any given class.

1.4.3 Meta models and meta objects
As seen from the user's point of view, coordinate systems or coordinate reference systems as well as
graphic symbols, are represented as model elements (resp. schema elements) which can be used in
application definitions. Since different coordinate systems and coordinate reference systems and above
all different graphic symbols can be described in the same way, it makes sense to also describe their
characteristics within models by means of classes. Thus every system, resp. every graphic symbol (e.g. a
point symbol, a line type) corresponds to an object.

Meta objects must be defined in a meta model. Applicable objects must explicitly be identified as meta
objects (extensions of the predefined class meta objects) and consequently can be referenced via their

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 15

names. To achieve this, it is necessary that meta objects be available to the tool, which treats the
application definition by means of baskets (cf. chapter 1.4.5 Baskets, replication and data transfer).

1.4.4 Relationships between objects
INTERLIS 2 (as opposed to INTERLIS 1) distinguishes between two types of relationships between
objects: proper relationships and reference attribute.

The term relationship refers to a set of object-pairs (resp. in general object-n-tuples). The first object of
each pair belongs to a first class A, the second to a second class B. Since the attribution of objects to
pairs is to be predefined, it must only be described, i.e. modeled. As shown further along in chapter 1.5
View concept, it is however also possible to compute this attribution algorithmically, e.g. based upon
attribute values.

Proper relationships are described as independent constructs, so-called relationship classes (resp.
association classes) that again are extendable. INTERLIS 2 does not only support one-to-one
relationships, but also permits multiple relationships and relationships with their own attributes. Thus a
relationship class in return is also an object-class.

Important characteristics of such relationships are:

• Cardinality – how many objects of class B (resp. class A) can be ascribed to one object of class A
(resp. B) within the relationship?

• Force – INTERLIS 2 differentiates between associations, aggregations and composition. In all
cases the objects in question can be applied to independently. In the case of aggregation and
association the objects exist independently of each other. In the case of aggregation and
composition we find asymmetry between the classes concerned. The objects of one class (the
super class) are described as entities (resp. super-objects), the objects of he other class (subclass)
are parts (resp. sub-objects). In associations all objects are equal and only loosely connected. Both
aggregation and composition are conceptually directed associations: An entity (super-object of the
super class) is ascribed several parts (sub-objects of the subclass). When dealing with an
aggregation all ascribed parts are automatically copied when copying the entity, however when
deleting the entity the corresponding parts remain untouched. Compared to an aggregation you will
find that a composition further implies, that when deleting the entity all parts are deleted at the
same time. How copying effects relationships to other objects is described in chapter 2.7.2 Force of
relationship. Note: Sub-objects (parts) of compositions are identifiable objects as opposed to
structural elements of sub-structures.

• Role - What significance have the classes involved see from the viewpoint of the relationship? This
is determined for each class involved by means of its role. INTERLIS 2 (as opposed to INTERLIS
1) also admits relationships exceeding the limits of one subject. This however on condition that the
relationship attribute is defined within such a class as belongs to a subject depending on the class
it is referred to.

By using a reference attribute we create a relationship between one object, resp. structural element to
another object. However such a relationship is only known to the referring object and not the object
referred to. Hence it is onesided.

Without violating the independence of topics it is possible to also define relationships (i.e. proper
relationships and reference attributes) by means of a special mark (EXTERNAL), these will create a
relationship with objects of a different basket of the same or a different topic. However only on condition
that the structure within which the relationship is defined belongs to a topic which depends on the topic
whose class it is referring to.

In the interest of a clear structure, relationships can only refer to classes already known when defining
relationship classes (resp. reference attributes).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 16

1.4.5 Baskets, replication and data transfer
A basket is a compact collection of objects, which form part of a topic or its extension. Compact means
that a basket contains all objects related to each other within one topic. A typical example may be a
certain area (town, county or even a country as a whole) whose objects in their entirety are contained in a
basket. Above all a basket may contain data supplied by various extensions (e.g. different cantons with
their own topic extensions), provided that within such a t ransfer community all labels of models, topics
and topic extensions are unequivocal.

Within the scope of constraints we often speak of "all" objects of a class. Basically this includes all objects
that have the quality desired and actually exist, i.e. basket-spanning. For various reasons (efficiency,
availability, access rights etc.) it is obvious that control is only possible within locally accessible baskets.
In the case of baskets with meta objects we state explicitly that constraints only apply within a basket,
since we presume that meta data are of descriptive character and have to be at the user's free disposal in
a basket (much in the way of a library).

• We distinguish different types of baskets: data-baskets – comprises all instances of classes of one
topic

• View-baskets: comprises all instances of views of one topic
• Baskets with basic data for graphics – comprises instances of all data or views necessary for the

graphics of one topic. Permits use of graphic application software.
• Baskets with graphic elements – comprises the instances of all graphic objects (= symbols), which

are necessary according to the graphics of one topic. Permits use of a graphic representation
software (renderer; see figure 5).

INTERLIS does not set rules on how objects must be kept within their systems. Rules only apply to the
intersection between systems. At present an intersection for the transfer of baskets as XML-files is
defined. Support is not only granted to the complete transfer of the entire basket, but also to the
incremental data transfer. We proceed on the assumption that in the case of complete transfer the
receiver will create new, independent object copies without any immediate connection with the original
object. Within the scope of complete transfer, objects must only be marked with a temporary transfer
identification (TID). TID's are used for transferring relationships.

Figure 4: Up-dating of a primary database and subsequent transfer to secondary databases (a

double arrow means incremental update).

In the case of incremental transfer we presume that to start with the sender supplies the initial state of a
data-basket (all other types of baskets are excluded) and subsequently provides updates, which will allow
actualizing the data received (see figure 4). Thus the objects are replicated and keep their connection

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 17

with the original object, i.e. they cannot be altered independently of the original and will not be given a
new identification.

We proceed on the assumption that their exist contracts between the management of primary and
secondary databases (extent, frequency of updates etc.) which at present cannot be covered by tools
provided by INTERLIS. For the update itself INTERLIS places the necessary tools at your disposal. New
objects are displayed in the same way as when first making a transfer and they are assigned an
unequivocal object identification (OID) – which must be up-kept at all times. Whenever changes occur,
this unequivocal OID is used as a point of reference and all attributes of the object (including all structural
elements of structure attributes) are updated. In the same way deleted objects are brought to your notice.
It is primarily the sender's responsibility to assure the consistency of objects (e.g. observance of
constraints, correctness and cardinality of relationships). To that end he notifies the receiver of any
alterations: objects deleted, updated, newly created. In the interest of independence of topics, we do not
assume that integrity is guaranteed at all times where several topics are concerned. It is up to the
receiver to cope with temporary inconsistencies between base topics and dependent topics, i.e. that an
object referred to does not exist.

INTERLIS does not determine the limits within which clearness of OID is guaranteed. Cf. appendix D
Organization of object identifiers (OID) for an example of how such an OID may be structured – yet other
possibilities definitely are conceivable. However it is of primordial importance that all data recorders of
one transfer community correctly apply the rules governing the structure of an OID, thus assuring that at
all times the OID remains unequivocal within the scope of the transfer community. Depending on the
structure of the OID incremental data exchange is possible within a wider (e.g. world-wide) or smaller
(e.g. within one organization) circle. Hence the method used to determine an OID also defines the
potential transfer community.

Any alteration on an object other than within its original basket strictly depends on the permission of its
administration. All other secondary baskets can alter an object only as a result of an update. That is why
INTERLIS demands – within the limits of incremental update - that not only objects but also baskets must
be identifiable in an unequivocal and permanent manner. Then an OID is also assigned to baskets.
Likewise in the case of a complete transfer the basket only needs a transfer identification (TID).
Whenever it is important to clearly distinguish between OID and OID of a basket, we speak of BOID
(resp. basket identification BID).

We must assume that to start with various objects are registered in baskets, e.g. of one town, then these
baskets as a whole are transmitted to the canton and subsequently will be integrated into baskets which
contain topic-wise the entire canton. Maybe these baskets will then be further transferred, e.g. to state
authorities. In order to have at any moment definite assurance as to the original basket, its BOID is
supplied with each replica of an object. This will allow the receiver to create his own basket-administration
by stating in which of his own baskets are stored replicated objects supplied by which original basket.
(INTERLIS also provides the necessary tools to label such baskets with INTERLIS itself and thus permits
their exchange much in the way of normal objects). It is one of the characteristics of INTERLIS 2 that
when dealing with relationships concerning several topics not only the OID's of the reference object but
also the BOID's of its original baskets are transferred. If the receiver makes full use of this INTERLIS 2-
feature which in the case of topic -spanning relationships allows not only to transfer the OID of reference
objects but also the BOID of their original baskets, he may determine in an efficient way in which of his
baskets the reference object is to be found.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 18

1.5 View concept
INTERLIS 2 enables the user not only to model objects themselves but also views. Views really are
virtual classes whose instances are not data originated from a real object, but data derived
mathematically from other objects.

A view definition consists of the following parts:

• Base sets which classes resp. views supply the objects that are introduced into the calculation of
view objects? In the case of classes not only the respective instances are taken into consideration,
but in the sense of polymorphism all instances of extensions as well. INTERLIS does not define the
baskets that have to be taken into account by a system when calculating a view.

• Interrelationship rules - INTERLIS 2 distinguishes joins, unions, aggregations and inspections of
sub-structures. In the terms of set theory, joins represent cross over products and unions the
combination of base sets. Aggregation allows you to combine elements of the base set in a new
view object, provided they fulfill definable criteria. Inspection of sub -structures allows you to view
the structural elements of a sub-structure as a set of structural elements. Joins and aggregations
may also be conceived as virtual associations.

• Selection – Which of the calculated objects should actually form part of the view? INTERLIS allows
you to define complex conditions concerning this aspect.

1.6 Graphic concept
Graphic descriptions are based upon classes or views – using a certain projection - and declare – in so-
called graphic definitions (see figure 5 and appendix K Glossary) which graphic symbols (e.g. point
symbol, line, area symbol or text label) are to be assigned to the objects of a view, thus permitting the
graphic user to create presentable graphic objects. The graphic symbols themselves have been defined
in an extra symbology model – symbol characteristics can be found there as well.

Figure 5: Graphic definitions, on one hand built upon data and views, on the other upon symbols

permitting generation of graphics (abstract diagram).

The reference to the graphic symbols in question ensues by using names; see symbol object names in
figure 5. The graphic symbols as such (also named symbol objects) are contained like objects (data) in
their respective meta objects-baskets. A basket with such symbol objects is also known as a symbol
library.

A symbology model determines for every symbol type within its respective symbol class, which additional
parameters (e.g. position and orientation of a symbol) are necessary for its representation. Thus the
intersection with the graphic-subsystem (graphic application software) of the respective systems is not
determined by INTERLIS itself, but by the symbology models. To this extent it is possible at any moment
to declare further global parameters (e.g. scale of representation), at the time are known to the graphic

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 19

sub-system and able to influence the decision, which symbols are to be used in the representation. Since
such determinations are closely related to the actual possibilities of the systems, these parameters as
well as characteristics of symbols must be subjects of contractual agreement with suppliers (c f. chapter
1.7 Contracts).

A graphic description need not regulate the conversion into symbols in a final way. On the contrary, it can
be inherited from a different graphic description. It is then possible to supplement parameters left
undefined in base definitions, or existing directions can be replaced.

1.7 Contracts
In order for INTERLIS 2 to be able to meet all kinds of demands, it contains also constructs whose
implementation is not regulated by the definition, e.g. functions, line types, symbols (details will be treated
in chapter 2 Description Language). Without undertaking further efforts, the goal that an INTERLIS 2
description automatically ought to be convertible into a service could not be achieved. In the interest of
simplicity however, INTERLIS does not offer any further possibilities of definitions for such cases (as for
example an actual programming language for the definition of functions).

In order to render feasible the automatic conversion within at least certain limits (e.g. a country or a
certain range of application), such constructs should only be admissible within models covered by
contracts.

Contracts are agreements between parties who define models and parties who supply tools based upon
INTERLIS. Typically it is only basic models of one line of industry or one country that are object of such
an agreement. In order to achieve the definition of these basic models, modelers and tool providers work
together and sign an agreement. Henceforth tool providers can realize the elements demanded by these
models (e.g. functions) independently of the concrete form of application. Thereupon the concrete models
can be converted automatically (i.e. without the help of a tool provider).

It is of great importance, that such supplementary constructions be generally discussed and neutral of
any specific system, as well as being at public disposal in much the same way as the model itself.
Otherwise one of the most important aims of INTERLIS, that is to say openness and interoperability,
cannot be guaranteed.

1.8 Services, tool capacities and conformity
INTERLIS 2 permits a conceptual description of data and defines a system-neutral transfer. INTERLIS 2
explicitly renounces all directions concerning implementation in order to remain system-independent.
Thus often in practical operation the question will arise whether a certain tool or a required service is in
conformity with INTERLIS or not.

INTERLIS does not stipulate that only the extremities of complete conformance or non-conformance are
conceivable. On the contrary one service will conform to INTERLIS in some aspects while not fulfilling
other requirements.

In the simplest of cases a certain system meets the INTERLIS specifications in one particular case (for a
fixed set of models, only read or only write or both, etc.).

Ideally a set of INTERLIS models can be handed over to an INTERLIS tool, whereupon the tool
automatically adapts its services and capacities in accordance with the situation defined by the models. In
many cases however this adaptation will demand further manual efforts such as system configuration or
even programming. No doubt an essential requirement in such tools is their capacity to read INTERLIS
model descriptions correctly. Above all this means that system abilities are offered correctly according to
INTERLIS constructs, especially inheritance constructs.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 20

From the standpoint of INTERLIS, the capacities of such tools may be classified as follows (so-called tool
capabilities, functionalities or services):

• Read data (including views memorized, no generating of view-objects)
• Read data (including views memorized plus generating of view-objects)

• Examine consistencies
• Write views
• Produce graphics (including the reading of views)

• Treat and write data
• Produce object identifiers (OID)
• Read updates (incremental updates)

• Write updates (incremental updates)
It is quite conceivable that a certain tool or some service will have certain capacities (e.g. incremental
update) for one model or topic (data or views), but will not support them in other models or topics.

Moreover the question arises which contracts (i.e. which basic models) should be supported by a tool.

Figure 6: The various ranges of application of INTERLIS. A double arrow means that data can be

incrementally transferred.

When observing an example of joint efforts of various parties concerned, it becomes obvious that different
INTERLIS 2 tool capabilities or services will be in demand – depending on the operational area and role
of the user (see figure 6). Within one application (i.e. INTERLIS model) with different topics (TOPICS) one
single user may have various roles:

• Collector of primary data: work with and write data, produce OID, if the occasion should arise.
• Changer of geodata (update, supplement): collect data, write and work with data, produce OID,

produce increments, read increments, examine consistencies (locally).
• Administrator of geodata, geodata center: collect data, write and work with data, produce OID, read

increments, examine consistencies (globally).
• User of geodata: collect data, read increments.
• Viewer of geodata: collect data, produce view objects and graphic representations.

• Producer of map: collect data, read increments; read views and produce graphic representations.

1.9 A small example as an introduction
Appendix C A small example Roads supplies a small example that presents the most important elements
of INTERLIS within the limits of a simple application.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 21

Figure 7: Roads - a small example.

1.10 How this document is structured
This reference manual is subdivided as follows: In chapter 2 our description language is formally defined.
In chapter 3 the sequential transfer of geodata is specified. This chapter is divided into a more general
part concerned with the present and future sequential transfer services of INTERLIS 2, and a more
specific part regarding the INTERLIS 2 transfer service with XML.

The appendices are arranged in two normative appendices A and B, complemented by an informative
appendix C, several standard extension suggestions D through to J, as well as a glossary (appendix K)
and an index (appendix L).

The normative appendices are integrating part of this specification. We strongly recommend the standard
extension suggestions (appendices D through to J) for implementation. These are informative (non-
normative) appendices, however of autonomous character. Implementations may find different answers to
these questions; they will still remain INTERLIS 2 conformant. In such a case it is up to the parties
involved in the transfer to reach an agreement concerning the specification. Most ranges of application
will be object of a contract.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 22

2 Description language

2.1 Syntax applied
In order to determine a conceptual data model (data schema) and transfer parameters of a data transfer,
a formal language will be defined in the following chapters. This language itself has been formally
defined. Therein rules of syntax set the admissible sequence of symbols.

Thus this description is analogous to the ones generally employed in modern programming languages.
Hence we only give you the briefest of outlines needed for basic understanding and advise you to consult
technical literature for further details (e.g. a short introduction can be found in "Programming in Modula-2
by Niklaus Wirth).

In the sense of the extended Backus-Naur-Notation (EBNF) a formula is structured as follows:

Formula-Name = Formula-Expression.

This formula-expression is a combination of:

• Fixed words (including special characters) of the language. They are enclosed in apostrophes, e.g.
'BEGIN'

• References of other formulas by indicating the formula-name.
Valid combinations are the following

Sequential composition

a b c first a, then b, then c.

Grouping

(a) round brackets group formula-expressions.

Choice

a | b | c a, b or c.

Option

[a] a or nothing (void).

Optional repetition

{ a } any chosen sequence of a or nothing (void).

Obligatory repetition (as supplement to EBNF)

(* a *) any chosen sequence of a, minimum one.

Examples:

(a|b)(c|d) ac, ad, bc or bd
a[b]c abc or ac
a{ba} a, aba, ababa, abababa, ...
{a|b}c c, ac, bc, aac, abc, bbc, bac, ...
a(*b*) ab, abb, abbb, abbbb, ...
(*ab|[c]d*) ab, d, cd, abd, dab, cdab, ababddd, cdababcddcd, ...

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 23

Often one would like to use a syntactically identical formula in different contexts, for different purposes. In
order to express this correlation, an additional formula would have to be written:

Example = 'CLASS' Classname '=' Classdef.
Classname = Name.

In order to avoid this detour, we rather use the following shortened notation:

Example = 'CLASS' Class-Name '=' Classdef.

The formula Class-Name is not defined. Syntactically the rule "Name" is directly applied (cf. chapter 2.2.2
Names). Considering its meaning, name however is a class-name. Thus "class" virtually becomes a
comment.

2.2 Basic symbols of the language
Our description language features the following classes of symbols: Names, strings, figures,
explanations, special symbols, reserved words and comments.

2.2.1 Character codes utilized, blanks and line ends
The language itself only uses the printable US-ASCII symbols (32 to 126). What other symbols besides
the blank space are considered as interspaced, has to be determined by the actual compiler
implementation. It is also up to this implementation to determine what symbols or combination of symbols
mark the end of a line. Likewise it is the compiler implementation that determines the memorization of
symbols (character set). This might differ depending on the plat form used.

As far as comments are concerned, it is also admissible to apply further symbols such as umlauts and
accent marks, etc.

2.2.2 Names
A name is defined as a sequence of a maximum of 256 letters, digits and underlines, wherein the first
symbol has to be a letter. We distinguish between capitals and small letters. Names that coincide with
reserved words of this language (c f. chapter 2.2.7 Special symbols and reserved words) are inadmissible.

Syntax rules:

Name = Letter { Letter | Digit | '_' }.
Letter = ('A' | .. | 'Z' | 'a' | .. | 'z').
Digit = ('0' | '1' | .. | '9').
HexDigit = (Digit | 'A' | .. | 'F' | 'a' | .. | 'f').

Further information regarding uniqueness and validity domain of names is to be found in chapter 2.5.4
Namespaces.

2.2.3 Strings
Strings appear in connection with constants. They begin and end with quotation marks and may not
exceed one line. \" Represents a quotation mark, \\ a backslash within a string.

A sequence of \u, immediately followed by exactly four hexadigits represents any chosen Unicode sign.
Symbols beyond U+10000 are to be marked, as in the UTF-16-Coding, with two surrogate codes (see
www.unicode.org).

Syntax rule:

String = '"' { <any character except '\' or '"'>
 | '\"'
 | '\\'

http://www.unicode.org/
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 24

 | '\u' HexDigit HexDigit HexDigit HexDigit
 } '"'.

2.2.4 Digits
Digits may appear in different ways: positive whole numbers including 0 (PosNumber), numbers
(Number), decimals (Dec) and structured numbers. With decimal numbers the scaling may be shown to
the power of ten (e.g. 1E2 is 100, 1E-1 is 0.1). Structured numbers only make sense in relation with
corresponding units and value ranges (e.g. time). It is only the value of a number that is of importance
and not its representation, e.g. 007 is the same as 7.

Syntax rules:

PosNumber = (* Digit *).
Number = ['+' | '-'] PosNumber.
Dec = (Number ['.' PosNumber] | Float).
Float = ['+' | '-'] '0.' (('1' | '2' | .. | '9') [PosNumber]
 | (* '0' *)) Scaling.
Scaling = ('e' | 'E') Number.

Examples:

PosNumber: 5134523 1 23
Number: 123 -435 +5769
Dec: 123.456 0.123456e4 -0.123e-2
Float: 0.1e7 -0.123456E+4 0.987e-100

2.2.5 Sets of properties
For several purposes it is necessary to assign properties to a subject matter. To this aim use the general
syntax:

Syntax rule:

Properties = ['(' Property { ',' Property } ')'].

In order to define that at a certain place within a syntax rule such properties ought to be defined, the
following construct is inserted into the syntax:

'Properties' '<' Property-Keyword { ',' Property-Keyword } '>'

Hence you write "Properties" and define in brackets (< and >) the admissible keywords. If you take for
example the rule ClassDef (cf. chapter 2.5.3 Classes and structures), with "Properties<ABSTRACT,
EXTENDED, FINAL>" the keywords "ABSTRACT", "EXTENDED", "FINAL" are accepted terms for the
description of properties. Within an INTERLIS 2-Definition amongst others the following definitions would
be possible:

CLASS A (ABSTRACT) =
CLASS A (EXTENDED, FINAL) =

2.2.6 Explanations
Explanations are required wherever circumstances have to be described more closely. From the
viewpoint of the standard mechanism, this explanation will not be interpreted any further, i.e. it is
considered a comment. But it is quite permissible to formalize explanations in more detail, so as to
prepare them for further mechanical processing. We have chosen // to mark the beginning and the end of
an explanation. Within an explanation two subsequent diagonal strokes may never occur.

Syntax rule:

Explanation = '//' any character except // '//'.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 25

2.2.7 Special symbols and reserved words
In connection with the syntax rules of the language (however not where a data description is concerned),
special symbols as well as reserved words always appear between apostrophes e.g. ', ' or 'MODEL'. On
principle, all reserved words are written in capitals. In order to avoid conflicts between names and
reserved words, we advise you not to compose names in capitals.

The following reserved words have been used (some of them already in INTERLIS 1, these remain
reserved for reasons of compatibility; they are not represented in bold and italics):

ABSTRACT ACCORDING AGGREGATES AGGREGATION
ALL AND ANY ANYCLASS
ANYSTRUCTURE ARCS AREA AS
ASSOCIATION AT ATTRIBUTE ATTRIBUTES
BAG BASE BASED BASKET
BINARY BLACKBOX BLANK BOOLEAN
BY CARDINALITY CIRCULAR CLASS
CLOCKWISE CODE CONSTRAINT CONSTRAINTS
CONTINUE CONTINUOUS CONTOUR CONTRACTED
COORD COORD2 COORD3 COUNTERCLOCKWISE
DATE DEFAULT DEFINED DEGREES
DEPENDS DERIVATIVES DERIVED DIM1
DIM2 DIRECTED DOMAIN END
ENUMTREEVAL ENUMVAL EQUAL EXISTENCE
EXTENDED EXTENDS EXTERNAL FINAL
FIRST FIX FONT FORM
FORMAT FREE FROM FUNCTION
GRADS GRAPHIC HALIGNMENT HIDING
I16 I32 IDENT IMPORTS
IN INHERITANCE INSPECTION INTERLIS
JOIN LAST LINE LINEATTR
LINESIZE LIST LNBASE LOCAL
MANDATORY METAOBJECT MODEL MTEXT
NAME NO NOT NULL
NUMERIC OBJECT OBJECTS OF
OID ON OPTIONAL OR
ORDERED OTHERS OVERLAPS PARAMETER
PARENT PERIPHERY PI POLYLINE
PROJECTION RADIANS REFERENCE REFSYSTEM
REQUIRED RESTRICTION ROTATION SET
SIGN STRAIGHTS STRUCTURE SUBDIVISION
SURFACE SYMBOLOGY TABLE TEXT
THATAREA THIS THISAREA TID
TIDSIZE TO TOPIC TRANSFER
TRANSIENT TRANSLATION TYPE UNDEFINED
UNION UNIQUE UNIT UNQUALIFIED
URI VALIGNMENT VERSION VERTEX
VERTEXINFO VIEW WHEN WHERE
WITH WITHOUT

Table 1: Reserved words in INTERLIS 2.

2.2.8 Comments
Two forms of comments are at your disposal:

2.2.8.1 Line comment
Two exclamation marks, one immediately after the other, mark the beginning of a line comment. The line
end closes the line comment.

Syntax rule:

!! Line comment; goes until end of line

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 26

2.2.8.2 Block comment
A diagonal stroke and a star introduce a block comment; a star and a diagonal stroke mark its end. It can
extend over several lines and may contain itself line comments; involved block comments are not
permissible.

Syntax rule:

/* Block comment,
 additional line comment */

2.3 Principal rule
Each description unit starts by indicating the language version. Thus we lay the basis for language
supplements at a later date. In this document we describe version 2.3 of INTERLIS.

Subsequently you will find model descriptions.

Syntax rule:

INTERLIS2Def = 'INTERLIS' Version-Dec ';'
 { ModelDef }.

2.4 Inheritance
Different constructs of INTERLIS may be extended in the sense of the object-oriented way of thinking:
Firstly a definition sets a basis that thereafter can be specialized in several steps.

Topics, classes, views, graphic definitions, units and domains can extend their corresponding basic
constructs (keyword EXTENDS, resp. EXTENDED) and therewith inherit all their properties. In certain
cases it may be possible that indicating EXTENDED extend a primarily defined construction, and yet keep
its name.

FINAL prevents the extension of a definition. Some constructions can be defined in a still incomplete form
(keyword ABSTRACT); in an extension supplied at a later time they will be complemented and become
concrete definitions.

In order to indicate all admissible keywords within a certain context, we use the general property –
notation (cf. chapter 2.2.5 Sets of properties).

2.5 Models, topics, classes

2.5.1 Models
The term 'model' means a self-contained, complete definition. According to the type of model it may
contain several constructions.

A pure type model (TYPE MODEL) may only declare measure units, domains, functions and types of
lines.

A reference-system model (REFSYSTEM MODEL) should declare definitions of a type model, as well as
topics and classes related to the extensions of the predefined classes AXIS, resp. REFSYSTEM (cf.
chapter 2.10.3 Reference systems). The language cannot reinforce the observation of this rule. It is up to
the user to abide by it.

A symbology model (SYMBOLOGY MODEL) should declare definitions of a type model, as well as topics
and classes related to the extensions of the predefined class SIGN, and furthermore run time parameters
(cf. chapter 2.16 Graphic descriptions and chapter 2.11 Run time parameters). It is up to the user to

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 27

observe this rule. Symbology models can only be permitted in connection with contracts, as they have to
be adapted to their treatment by the system.

Where no restrictive model properties are defined, a model may contain any conceivable construct.

Following the model name the language can be indicated (optional). Whenever possible this should be
done according to ISO-Norm 639 , i.e. in two letters and using small letters (see www.iso.ch/), e.g. "de"
stands for German, "fr" for French, "it" for Italian, "en" for English. According to ISO-Norm 3166 a country
code can be added separated by an under line to indicate a variety of language used in a specific
country: "de_CH" stands for the written High German used in Switzerland. This indication is of
documentary value, in connection with the possibility to declare one model translation of another
(TRANSLATION OF). In their structure both models must be exactly identical, hence they can only differ
in the names employed. However the declaration 'translation' is not tied to the indication of language. For
example in order to support local use of language or particular trade vocabulary it is admissible to add
translations in the original language.

Following this the author of the model will be identified by indicating the corresponding URI (c f. chapter
2.8.1 Strings). We expect the model name to be unequivocal within this context.

Syntax rule:

ModelDef = ['CONTRACTED'] ['TYPE' | 'REFSYSTEM' | 'SYMBOLOGY']
 'MODEL' Model-Name ['(' Language-Name ')']
 'AT' URI-String
 'VERSION' ModelVersion-String [Explanation]
 ['TRANSLATION' 'OF' Model-Name '[' ModelVersion-String ']']
 '='
 { 'IMPORTS' ['UNQUALIFIED'] Model-Name
 { ',' ['UNQUALIFIED'] Model-Name } ';' }
 { MetaDataBasketDef
 | UnitDef
 | FunctionDef
 | LineFormTypeDef
 | DomainDef
 | RunTimeParameterDef
 | ClassDef
 | StructureDef
 | TopicDef }
 'END' Model-Name '.'.

By means of this model version we are able to distinguish between different versions (above all different
levels of development) of a model. In the comments it is possible to add further information such as
remarks concerning compatibility with earlier versions. Nevertheless at a certain moment in time there
should only exist one model version. That is why no version will be indicated when importing models. If
one model is a translation of another, its version has to be indicated in brackets. Hence such an indication
of version within the scope of a translation definition (TRANSLATION OF) will only demonstrate which
basic version was used as a base for this translation, i.e. which basic version will have exactly the same
structures.

Whenever a model uses language elements demanding a contract, this model has to be signalized
specifically (keyword CONTRACTED).

Whenever an INTERLIS construction refers to a definition stated in another model, this model has to be
imported (keyword IMPORTS). Thus topics can be extended and references to classes created.
IMPORTS only offers the possibility of use. When using imported definitions they still have to be referred
to with a qualified name (model, topic), unless the keyword UNQUALIFIED is applied. Topics will only

http://www.iso.ch/
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 28

belong to a model (and thus can be transferred in accordance with chapter 3.3.6 Coding of topics), if they
have been defined within this model (rule TopicDef).

A pre-defined base model "INTERLIS" (cf. appendix A The internal INTERLIS-data model) is connected
to the language. It need not be imported. Nevertheless its elements are only available with unqualified
names, if the model is introduced with IMPORTS UNQUALIFIED INTERLIS.

2.5.2 Topics
A topic (keyword TOPIC) contains all definitions necessary to describe a specific part of reality. A topic
can also define types such as measure units, domains or structures or it may use those belonging to the
enveloping model or an imported model.

Put in parenthesis () properties of inheritance can be defined. Since an extension of a topic always refers
to a topic of a different name, EXTENDED would not make sense and hence is not admissible.

Syntax rules:

TopicDef = ['VIEW'] 'TOPIC' Topic-Name
 Properties<ABSTRACT,FINAL>
 ['EXTENDS' TopicRef] '='
 ['BASKET' 'OID' 'AS' OID-DomainRef ';']
 ['OID' 'AS' OID-DomainRef ';']
 { 'DEPENDS' 'ON' TopicRef { ',' TopicRef } ';' }
 Definitions
 'END' Topic-Name ';'.

Definitions = { MetaDataBasketDef
 | UnitDef
 | FunctionDef
 | DomainDef
 | ClassDef
 | StructureDef
 | AssociationDef
 | ConstraintsDef
 | ViewDef
 | GraphicDef }.

TopicRef = [Model-Name '.'] Topic-Name.

Concerning a certain topic, which contains concrete classes, there may exist an indefinite number of
baskets (databases etc.) They all possess a structure corresponding to the topic but contain different
objects.

A data basket only features instances of classes (and their sub-structures). If a topic contains graphic
descriptions, three types of baskets can be set up.

• Data baskets.
• Baskets with basic data for graphics. Such baskets contain the instances of classes or views which

lay the foundation for graphic descriptions.
• Graphic baskets. These baskets contain graphic objects that have been realized (according to the

parameter definition of the symbols employed.
As a rule baskets and objects feature an object identification. Their domains result from the
corresponding definition: BASKET OID AS for the object identifications of any basket, OID AS for the
object identifications of any object, provided no specific definition was made with the corresponding class.
Once an OID-domain has been assigned to a topic, this can no longer be modified in extensions. In many
cases it will make sense to use the standard domain STANDARDOID (cf. chapter 2.8.9 Domains of object
identifications as well as appendices A and D). Definitions concerning object identifications (BASKET OID

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 29

AS, OID AS) are only admissible within the scope of contracts. If there is no OID definition for a topic or a
certain class, no stable object identification will be provided for these baskets resp. objects and
consequently no incremental data exchange will be possible.

With exception of specific indications, one topic is, where data are concerned, independent of other
topics. Data-related dependencies arise as a consequence of relationships, resp. reference attributes,
which refer to a different basket, through special constraints or by means of construction of views or
graphic-definitions on classes or other views, but not as a consequence of the use of meta objects (cf.
chapter 2.10.1 General comments concerning meta objects). In the interest of clear recognizability of
such dependencies these must be explicitly declared already in topic heading (keyword DEPENDS ON).
Detailed definitions (e.g. definitions of relationships) may not violate declarations of dependencies. Cyclic
dependencies are inadmissible. Without further declaration an extended topic features the same
dependencies as its base-topic.

2.5.3 Classes and structures
A class definition (keyword CLASS) declares the properties of all its pertinent objects. Class definitions
can be extended whereby an extension primarily inherits all attributes of its basic class. Its domain can be
limited and more attributes can be defined.

The domain of the object identifications of all objects of such a class can be determined explicitly (OID
AS). Without such a definition we apply the definition of the topic, unless it has been stated explicitly, that
no object identifications will be demanded (NO OID). It is impossible to enlarge an already made OID
definition, the only exception being an inherited ANY which can be replaced by a concrete definition.
However such an inherited ANY cannot be replaced by NO OID (cf. chapter 2.8.9 Domains of object
identifications).

As part of a class definition constraints can be indicated. These conditions represent additional rules all
objects have to comply with. Inherited constraints can never be suspended, but always are in force in
addition to those declared locally.

Objects of a class are always independent and individually identifiable. Structures (keyword
STRUCTURES) formally are defined in the same way as classes, however their structural elements are
dependent and cannot be identified individually. They either occur within sub-structures of objects (cf.
chapter 2.6 Attributes) or they only exist temporarily as a result of functions.

Specific classes such as those for reference systems; coordinate system axis and graphic symbols (in
other words extensions of the predefined class METAOBJECT) will be treated in chapter 2.10 Dealing
with meta objects.

In brackets (rule Properties) characteristics of inheritance can be defined. All possibilities are admissible.
Whenever a class or structure contains abstract attributes, it has to be declared ABSTRACT. Abstract
attributes must be put into concrete terms within the concrete extension of the class. Yet it is also
permissible to declare classes as abstract even though their attributes are fully defined. Object instances
can only exist for concrete classes that have been defined within a topic. Classes that have been defined
out of topics (i.e. directly within the model) may not contain reference attributes. Furthermore it is not
admissible to define associations to such classes.

If only an individual class and not the entire a class are inherited, no relationships (c f. chapter 2.7 Proper
relationships) may be defined.

If one topic extends another, all classes of the inherited topic are transferred. Thus they become classes
of the current topic and have the same name as in the inherited topic. Such a class may be extended
even while keeping its name (EXTENDED). For example if a topic T2 extends the topic T1 that contains
the class C, there is only one class with C (EXTENDED) within T2, and that is C. New classes that have

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 30

to differ in name from those inherited may also extend inherited classes. Consequently with C2
EXTENDS C there are two such classes in T2 (C and C2). Since INTERLIS, in the interest of simplicity
and clarity only supports simple inheritance, EXTENDED is only admissible when neither in the basic
topic nor in the current topic the basic class has been extended with EXTENDS. EXTENDED and
EXTENDS exclude one another in the same class definition.

Classes and structures that are not built upon a class or structure already defined need no EXTENDS-
part.

Syntax rules:

ClassDef = 'CLASS' Class-Name
 Properties<ABSTRACT,EXTENDED,FINAL>
 ['EXTENDS' ClassOrStructureRef] '='
 [('OID' 'AS' OID-DomainRef | 'NO' 'OID') ';']
 ClassOrStructureDef
 'END' Class-Name ';'.

StructureDef = 'STRUCTURE' Structure-Name
 Properties<ABSTRACT,EXTENDED,FINAL>
 ['EXTENDS' StructureRef] '='
 ClassOrStructureDef
 'END' Structure-Name ';'.

ClassOrStructureDef = ['ATTRIBUTE'] { AttributeDef }
 { ConstraintDef }
 ['PARAMETER' { ParameterDef }].

ClassRef = [Model-Name '.' [Topic-Name '.']] Class-Name.

StructureRef = [Model-Name '.' [Topic-Name '.']] Structure-Name.

ClassOrStructureRef = (ClassRef | StructureRef).

Which names have to be qualified (by model-name, resp. model-name.topic-name) will be explained at
the end of the following paragraph (cf. chapter 2.5.4 Namespaces). Classes and structures that are not
built upon an already defined class or structure do not need an EXTENDS-part.

2.5.4 Namespaces
The term namespace signifies a set of (unequivocal) names. Each modeling element (data model, topic,
class element), as well as all meta data-baskets provide their respective namespace for their name
categories (type name, part name, meta object name).

Modeling elements exist on three hierarchy levels:

• Model (MODEL is sole modeling element at top level)
• Topic (TOPIC is sole modeling element on this level)
• Class elements are CLASS, STRUCTURE, ASSOCIATION, VIEW and GRAPHIC

Meta data-basket names give access to meta objects (cf. chapter 2.10 Dealing with meta objects).

There are three name categories that contain the following names:

• Type names are abbreviations (names) of units and the names of functions, line types, domains,
structures, topics, classes, associations, views, graphics, baskets.

• Part names are the names of run time parameters, attributes, rules for drawing, parameters, roles
and basic views.

• Meta object-names are the names of meta objects. They only exist within meta data-baskets.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 31

Whenever a modeling element extends another, all names of the base modeling element will be added to
its namespaces. In order to avoid misunderstandings modeling elements take over the name of the
superior modeling elements in accordance with the name category. A name locally defined within the
modeling element may not collide with a name that has been transmitted unless it is specifically termed
as an extension (EXTENDED).

If you want to reference description elements of the data model, their name is usually to be qualified, i.e. it
has to be indicated with preceding model and topic name. Unqualified it is possible to use the names of
the namespaces of the respective modeling element.

2.6 Attributes

2.6.1 General comments concerning attributes
Its name and its type define each attribute. In brackets (rule Properties) characteristics of inheritance can
be defined. Whenever an attribute is an extension of an inherited attribute, this must be explicitly
indicated with EXTENDED. If the domain of this attribute is abstract, the attribute must be declared
ABSTRACT. A numeric attribute (cf. chapter 2.8.5 Numeric data types) can be defined as a subdivision
(keyword SUBDIVISION) of its also numeric predecessor-attribute (e.g. minutes as a subdivision of
hours). Such a predecessor-attribute must be a whole number and the domain of the subdivision must be
positive. If the subdivision is continuous (keyword CONTINUOUS), then the difference of the doomain
limits must be in keeping with the factor between the unit of the attribute and the unit of the predecessor-
attribute. If a reference system has been defined with regard to a subdivision it must tally with the system
of a direct or indirect predecessor-attribute. However no INTERLIS-Compiler or runtime system will have
to check this fact.

Syntax rule:

AttributeDef = [['CONTINUOUS'] 'SUBDIVISION']
 Attribute-Name Properties<ABSTRACT,EXTENDED,FINAL,TRANSIENT>
 ':' AttrTypeDef
 [':=' Factor { ',' Factor }] ';'.

If the attribute value has been determined by means of a factor (cf. chapter 2.13 Expressions), its result
type must be compatible with the defined attribute, i.e. it must either feature the same domain or an
extended, i.e. specialized domain. Within the scope of views – especially in the case of unions and view
extensions (cf. chapter 2.15 Views) – it is possible to determine several factors and in additional view
extensions further factors can be added yet. It is the last factor (base first, extension following) with
defined value that is valid. Attributes, that have been determined by means of a factor and that are only of
significance within other factors, should be excluded from any data transfer and should be signalized as
transient.

In extensions it is possible to override an attribute by the following means:

• Limited domain.
• A constant out of the required domain. Such a definition is implicitly final, i.e. it can no longer be

overridden.
• A factor, if the type of result would be admissible as extension of an attribute. Could still be

overridden.
Syntax rules:

AttrTypeDef = ('MANDATORY' [AttrType]
 | AttrType
 | (('BAG' | 'LIST') [Cardinality]
 'OF' RestrictedStructureRef)).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 32

AttrType = (Type
 | DomainRef
 | ReferenceAttr
 | RestrictedStructureRef).

ReferenceAttr = 'REFERENCE' 'TO'
 Properties<EXTERNAL> RestrictedClassOrAssRef.

RestrictedClassOrAssRef = (ClassOrAssociationRef | 'ANYCLASS')
 ['RESTRICTION' '(' ClassOrAssociationRef
 { ';' ClassOrAssociationRef } ')'].

ClassOrAssociationRef = (ClassRef | AssociationRef).

RestrictedStructureRef = (StructureRef | 'ANYSTRUCTURE')
 ['RESTRICTION' '(' StructureRef
 { ';' StructureRef } ')'].

RestrictedClassOrStructureRef = (ClassOrStructureRef | 'ANYSTRUCTURE')
 ['RESTRICTION' '(' ClassOrStructureRef
 { ';' ClassOrStructureRef } ')'].

Within the scope of extensions it is permissible to indicate only MANDATORY. In this case the already
defined attribute type is valid. However it is strictly required that the value be defined.

2.6.2 Attributes with domain as type
Direct type definition (rule Type) and the use of already defined domains (rule DomainRef) are
conceivable as types of attribute. Various possibilities are listed in chapter 2.8 Domains and constants.

2.6.3 Reference attributes
By using a reference attribute we create a reference to another object. Reference attributes are only
admissible within structures. A structure, which directly or indirectly (via sub-structures) contains
reference attributes, cannot be extended to a class. Links between independent objects have to be
defined by means of proper relationships (c f. chapter 2.7 Proper relationships).

Classes, whose elements are in consideration for reference, may be concrete or abstract object or
relationship classes, but not structures (since these are dependent objects). All concrete classes some in
question, provided they correspond to the listed primary class, resp. one of the listed restricting
(RESTRICTION TO) classes (class itself or one of its subclasses). On all restriction levels (initial
definition or steps of extension) all classes that are still admissible must be listed. Each class defined as a
restriction must be subclass of a class hitherto admissible. However such a class is only admissible if it
belongs to the same topic as the reference attribute or to a topic the referenced topic is depending on
(DEPENDS ON). If it is required that the reference may refer to the object of a different basket of either
the same or a different topic (prerequisite: DEPENDS ON), the property EXTERNAL must be indicated. In
extensions it is possible to omit and thus exclude this property, however it cannot be added. Unless the
reference attribute has been declared abstract, there must be a minimum of one admissible concrete
subclass.

2.6.4 Structure attributes
Values of structure attributes are composed of one (neither LIST nor BAG required) or several
(admissible number within the scope of the cardinality indicated) ordered (LIST) or disordered (BAG)
structural elements. Structural elements have no OID, exist only in connection with their main object and
can only be found by passing via the former. Their composition is a result of the indicated structure (rule
RestrictedStructureRef).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 33

Structure attributes can be defined with concrete or abstract structures. On principle all structures (but not
all classes) are suitable for concrete structure elements, provided they correspond to or extend the
structures listed as primary or restricting (RESTRICTION TO). No further information is necessary for the
structures of a current topic. Structures of all other topics will only be taken into consideration if they,
resp. a basic class also defined within this other topic, are explicitly listed in the definition of the structure
attribute as a primary or restricting structure. At each restriction level (primary definition or extensions) all
structures still admissible have to be listed. Each structure defined as an extension must be an extension
of a hitherto admissible structure.

If the structure of a structure attribute is arbitrary (ANYSTRUCTURE) or if no structure can be found that
complies with the definition, then the structure attribute must be declared as abstract, provided it is
mandatory or i f its minimal cardinality is greater than zero. If structures are defined as formal function
arguments (cf. chapter 2.14 Functions), then paths to structure elements or to objects come into question
as current arguments. Moreover through ANYSTRUCTURE all structure elements and all objects are
compatible.

An ordered sub-structure (LIST) may not be extended by a disordered sub-structure (BAG). The same
rules as with relationships apply to cardinality (cf. chapter 2.7.3 Cardinality).

2.7 Proper relationships

2.7.1 Description of relationships
Proper relationships (as opposed to reference attributes (c f. chapter 2.6 Attributes) are described as
independent constructs. However they largely have the same properties as classes. For instance they
themselves can feature local attributes and consistency constraints. The association name may be
omitted. In this case it will be implicitly composed with the role names (starting with the first, then second,
etc.). Nevertheless the most important property of a relationship consists in the listing of at least two roles
with their assigned classes or relationships (same rules apply as with reference attributes, (cf. chapter
2.6.3 Reference attributes) and details such as force of relationship and cardinality. Role names should
typically be nouns. They may but do not have to tally with the names of the assigned classes or
relationships. However the relationship to be defined may not be an extension of a relationship thus
assigned. It is also possible to alternatively assign different classes or relationships to one role. Such an
alternative class or relationship may not be an extension of another alternative class or relationship of the
same role.

Example of a relationship between the class K on the one side, and the classes K or L on the other:

ASSOCIATION A =
 K –- K;
 KL –- K OR L;
END A;

On principle relationships can be extended in the same way as classes. In order to ensure that the
significance of the relationship is clear and constant, no additional roles may appear in extensions.
However it is possible to restrict the classes or relationships assigned as well as the cardinality. Roles
unchanged must not be listed.

Example as to how the relationship A to A1 can be specialized, when only on one hand references to K1
(a subclass of K) and to K, L1, L2 (subclasses of L) on the other are admissible:

ASSOCIATION A1 EXTENDS A =
 K (EXTENDED) –- K1;
 KL (EXTENDED) –- K OR L RESTRICTION (L1, L2);
END A1;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 34

Hence an object of class K1 can either be related via a relationship A with objects of the classes K or L
(admissible, since K1 is a subclass of K) or via a relationship A1 with objects of the classes K, L1 or L2. If
furthermore we would like to make sure that an object K1 within the role K can only enter into a
specialized relationship A1(as opposed to the general relationship A), then the role K has to be signalized
as hiding (HIDING).

ASSOCIATION A1 EXTENDS A =
 K (EXTENDED, HIDING) –- K1;
 KL (EXTENDED) –- K OR L RESTRICTION (L1, L2);
END A1;

However this is only admissible if for K1 no other relationships as extensions from A have been defined
where the role K has not been signalized as hiding.

Syntax rules:

AssociationDef = 'ASSOCIATION' [Association-Name]
 Properties<ABSTRACT,EXTENDED,FINAL,OID>
 ['EXTENDS' AssociationRef]
 ['DERIVED' 'FROM' RenamedViewableRef] '='
 [('OID' 'AS' OID-DomainRef | 'NO' 'OID') ';']
 { RoleDef }
 ['ATTRIBUTE'] { AttributeDef }
 ['CARDINALITY' '=' Cardinality ';']
 { ConstraintDef }
 'END' [Association-Name] ';'.

AssociationRef = [Model-Name '.' [Topic-Name '.']] Association-Name.

RoleDef = Role-Name Properties<ABSTRACT,EXTENDED,FINAL,HIDING,
 ORDERED,EXTERNAL>
 ('--' | '-<>' | '-<#>') [Cardinality]
 RestrictedClassOrAssRef { 'OR' RestrictedClassOrAssRef }
 [':=' Role-Factor] ';'.

Cardinality = '{' ('*' | PosNumber ['..' (PosNumber | '*')]) '}'.

The association reference between objects may be considered as an independent object (association
reference). Primarily all roles for the references to reference objects will be stated on this association
reference (they all have to be defined!). Without further information this associat ion reference will be
identified through the references to the objects connected by the association reference. Between these
objects only such an association reference will be admissible. Multiple association reference among the
same object combination is only admissible i f a cardinality with upper limit greater than one is explicitly
required for the relationship (CARDINALITY). In this case an object identification (by means of Property
OID) is also required. If an object identification of its own is required, then the relationship itself can again
be used as a reference in roles.

If you strive to achieve compatibility with INTERLIS 1, only define relationships with two roles and do not
exceed maximal number of cardinality of a role greater than 1.

Normally concrete relationships between objects must be established explicitly by means of an
application and subsequently be fixed as instances by the processing system. A relationship can also be
derived from a view without being instanced (DERIVED FROM). Such a relationship can be an extension
of an abstract relationship, but cannot be abstract itself. If it is extended, the extension must build upon
the same view or upon one of its extensions. One object path has to be indicated (cf. chapter 2.13
Expressions) which designates a class or association corresponding to the role. The cardinality must be
in accordance with the performance of the view. This however can only be checked during run time.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 35

A typical case of an application might be the derivation of a relationship from its geometrical conditions:
within a view (union) which is referred to in the association and based upon the geometry of the real
estates they are situated on, e.g. buildings are brought in relation with these estates (cf. chapter 2.15
Views).

2.7.2 Force of relationship
In accordance with UML we distinguish different forces of relationship. In order to explain these we mainly
describe the influence the force of relationsphip possesses when copying or deleting objects. For
INTERLIS 2 however only the deleting of objects (due to incremental update) is of consequence. In
addition there are other considerations that influence the force of relationship. Above all it is up to the
individual software to set more refined forces of relationship or even other criteria for the processing of
certain operations.

• Association: The objects concerned are loosely connected. If one of the objects is copied, the copy
is connected to the same objects as the original. If an object is deleted, the relationship is deleted
at the same time, however the object itself remains. Syntactically we indicate '--' with all roles.

• Aggregation: There is only a feeble relationship between the entirety and its parts. Aggregations
are only permitted in relationships with two roles. Syntactically the role that leads to the entirety
must be indicated with a rhombus (-<>). The role that leads to the part is defined with '--'. An object
class may appear in several aggregations in the role of a part. Hence to a certain object of a part
there can be assigned different objects of the entirety. As opposed to associations, when making a
copy of the entirety corresponding copies of the parts are established. Since within the scope of
INTERLIS 2 the copying of objects is without significance, INTERLIS 2 treats aggregations much
as associations.

• Composition: A strong relationship exists between the entirety and its parts. An object class may
appear in the part-role in more than one composition. However only one entirety may be assigned
to a certain part-object. When deleting the entirety its parts are likewise deleted. The role that leads
to the entirety is indicated with a filled rhombus (-< #>).

Associations can be extended to aggregations, these can be extended to compositions, but the reverse is
not permissible.

2.7.3 Cardinality
Cardinality defines the minimum and maximum number of permissible objects, where only one value is
indicated minimum and maximum are the same. If for the maximum an asterisk replaces the number,
there is no upper limit for the number of sub-objects. The indication of cardinality with {*} is the equivalent
of {0..*}. If there is no indication of cardinality then normally {0..*} is in force. With composition roles only
{0..1} or {1} are admissible (one part can only belong to one entirety). Where there is no indication {0..1}
is in force.

In Extensions cardinality can only be restricted but not extended. Hence if in the first place a cardinality of
{2..4} has been indicated, an extension cannot declare {2..5}, {7} or {*}. If in extended attributes the
indication of cardinality is omitted, it means that the inherited value has been taken over.

Depending on the form of application, cardinality has the following significance:

• With sub-structures: number of admissible elements.
• With roles of relationships: Number of objects corresponding to one role which via the relationship

can be assigned to an arbitrary combination of objects that correspond to the other roles.
• With the relationship as a whole: Number of association references for an arbitrary combination of

objects in accordance with all roles of the relationship.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 36

2.7.4 Ordered relationships
If you want to achieve that a relationship, from the viewpoint of a certain reference class, is set up in a
certain order, this property (ORDERED) has to be required within the role. This order is defined when
establishing the relationship and has to be maintained throughout all transfers.

2.7.5 Relationship access
Relationship access (AssociationAccess) means the possibility, from the viewpoint of one object, to
navigate to the association references and further on to the reference objects in accordance with a
relationship. Relationship accesses need not be defined; they originate in the definition of a relationship
for all classes assigned via roles, which have been defined in the same topic as the relationship. If a class
involved in a relationship has been defined in a different topic (topic-spanning relationship), or i f it ought
to be permitted that a reference object corresponding to this role can be found in a basket other than the
one of the association reference, this fact has to be stated specifically with the role (EXTERNAL, cf.
chapter 2.7.1 Description of relationships and chapter 2.6.3 Reference attributes). Then this class will not
be supplied with relationship accesses. This property will be defined within the basic definition of a
relationship and cannot be modified within an extension. If a role refers to a class inherited from the
inherited topic, then relationship accesses out of this class are only permitted if this class has been
extended within the current topic of the same name (EXTENDED). This restriction prevents from being
modified subsequently (i.e. out of the scope within which it had originally been defined).

Relationship access will be t ransmitted to subclasses, unless this is ruled out for a role of an extended
relationship by means of the requirement (HIDING).

Relationship accesses are of significance for all path descriptions (cf. chapter 2.13 Expressions).

2.8 Domains and constants
Different aspects are linked to the idea of a domain. Primarily a data type has to be defined. INTERLIS
data types are independent of their implementation. That is why we do not speak of integer or real for
example, but simply of numeric data types (cf. chapter 2.8.5 Numeric data types).

Once the data type has been determined, further specifications can be necessary or possible, depending
on the data type in question. If a domain definition is yet incomplete (e.g. the length is lacking with a string
domain), it has to be declared as abstract (key word ABSTRACT, rule Properties).

Domains can be – as other constructs – inherited and thereafter extended, provided they have not been
defined FINAL. In such a case the basic principle that extended definitions must always be compatible
with their base definition, is of great importance. Thus in domains, extensions (keyword EXTENDS) really
are specifications, resp. restrictions. The keyword EXTENDED (rule Properties) is not admissible. In the
interest of readability we suggest that parts of definitions in base domains (such as measure units) be
repeated in the extension, even if they are unchanged. Example:

DOMAIN
 Text (ABSTRACT) = TEXT; !! abstract domain
 GenName EXTENDS Text = TEXT*12; !! concrete extension
 SpezName EXTENDS GenName = TEXT*10; !! ok
 SpezName EXTENDS GenName = TEXT*14; !! false, since incompatible

An important issue in the definition of domains is whether the value "undefined" belongs to the domain or
not. Without any specific indication it does form a part, yet it is possible to demand its exclusion, i.e. an
attribute with this domain must always be defined (keyword MANDATORY). MANDATORY alone is only
admissible in extensions.

When defining the attribute of a class or structure (and only then), MANDATORY may occur i f the domain
has been declared FINAL and consequently ought not to be restricted any further.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 37

Syntax rules:

DomainDef = 'DOMAIN'
 { Domain-Name Properties<ABSTRACT,FINAL>
 ['EXTENDS' DomainRef] '='
 ('MANDATORY' [Type] | Type) ';' }.

Type = (BaseType | LineType).

DomainRef = [Model-Name '.' [Topic-Name '.']] Domain-Name.

BaseType = (TextType
 | EnumerationType
 | EnumTreeValueType
 | AlignmentType
 | BooleanType
 | NumericType
 | FormattedType
 | CoordinateType
 | OIDType
 | BlackboxType
 | ClassType
 | AttributePathType).

In comparison operations (cf. chapter 2.13 Expressions), attribute values can also be compared with
constants. These are defined as follows:

Constant = ('UNDEFINED'
 | NumericConst
 | TextConst
 | FormattedConst
 | EnumerationConst
 | ClassConst
 | AttributePathConst).

Every data type defines its own specific constants.

2.8.1 Strings
The term ‚string’ depicts a series of symbols of maximum length. All the symbols supplied must be clearly
defined (cf. appendix B Symbol table).

Within the data type MTEXT you will find the symbols 'carriage return' (#xD), 'line feed' (#xA) and
'Tabulator' (#x9), as opposed to the domain of the data type TEXT.

With the data type string (TEXT), it is primarily the length of the string that is of interest. Depending on the
form of definition, it is indicated explicitly or implicitly. In its explicit form (TEXT*…), the maximum length is
determined in number of symbols (exceeding 0). If only the keywords TEXT or MTEXT are indicated, the
number of symbols is unlimited. Within the scope of an extension its length can be shortened
(lengthening would lead to a domain no longer compatible with the basic domain).

An INTERLIS string length features the number of symbols as perceived by the user, but not the
maximum number of memory storage spaces a system would need for the representation of such a
string. Strings whose length is zero are considered to be undefined.

Note: In connection with INTERLIS the length of a string is defined as the number of those symbols
which, according to Unicode-Standard, possess the canonical combination class n° 0, after the string has
been put into its canonically decomposed form of Unicode (see www.unicode/org./unicode/reports/tr15/).
Thus a string consisting of <LATIN CAPITAL LETTER C WITH CIRCUMFLEX><COMBINING CEDILLA>
possesses the length 1, the same as the equivalent string <LATIN CAPITAL LETTER C>< COMBINING

http://www.unicode/org./unicode/reports/tr15/
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 38

CIRCUMFLEX ACCENT><COMBINING CEDILLA>. According to the definition above, ligatures for "fl" or
"ffi" possess the length 1. However we advise you against using such representation forms for string
attributes.

The name string type (keyword NAME) defines a domain that corresponds exactly to the one of
INTERLIS-names (c f. chapter 2.2.2 Names). It is applied in the predefined class METAOBJECT and
above all in the classes for reference systems, as well as symbols (c f. chapter 2.10.3 Reference systems
and chapter 2.16 Graphic descriptions), because that is where data attributes have to coincide with
description elements of models.

URI (Uniform Resource Identifier) represents a further string type, e.g. http-, ftp- and mailto-addresses
(see paragraph 1.2 in internet standard IETF RFC 2396 at www.w3.org). The length of a URI in
INTERLIS is limited to 1023 symbols and hence corresponds to the following definition:

DOMAIN
 URI (FINAL) = TEXT*1023; !! ATTENTION: according to IETF RFC 2396
 NAME (FINAL) = TEXT*255; !! ATTENTION: according to chapter 2.2.2 Names

Syntax rules:

TextType = ('MTEXT' ['*' MaxLength-PosNumber]
 | 'TEXT' ['*' MaxLength-PosNumber]
 | 'NAME'
 | 'URI').

TextConst = String.

2.8.2 Enumerations
By means of an enumeration, all values admissible for this type are determined. However an enumeration
is not simply linear, but features a tree-like structure. The leaves of this tree (but not its knots) form the
set of admissible values. Example:

DOMAIN
 Colors = (red (dark_red, orange, crimson),
 yellow,
 green (light_green, dark_green));

Produces the following admissible values – described by means of constants:

#red.dark_red #red.orange #red.crimson #yellow #green.light_green #green.dark_green

A subdivision level is indicated in brackets (). The element names of each subdivision level must be
unequivocal. You are at liberty to choose whatever tree depth seems convenient.

In an ordered enumeration (keyword ORDERED), the sequence of elements is clearly defined. If the
enumeration is circular (keyword CIRCULAR), the sequence of elements is defined as if the enumeration
were ordered. Moreover it is stated that the last element will again be followed by the first.

Figure 8: Example of an enumeration.

www.w3.org
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 39

Besides the enumeration definition in its strictest sense it is also possible to define a domain that will
comprise as admissible values all leaves and nodes of an enumeration definition (ALL). Hence it is
possible to assign to such an attribute the value of an attribute of its fundamental enumeration definition.

Examples
DOMAIN
 Position = (bottom, center, top) ORDERED;
 Weekdays = (Working days (Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday),
 Sunday) CIRCULAR;
 ValuesOfWeekdays = = ALL OF Weekdays;

Syntax rules:

EnumerationType = Enumeration ['ORDERED' | 'CIRCULAR'].

EnumTreeValueType = 'ALL' 'OF' Enumeration-DomainRef.

Enumeration = '(' EnumElement { ',' EnumElement } [':' 'FINAL']
 | 'FINAL' ')'.

EnumElement = EnumElement-Name { '.' EnumElement-Name } [Sub-Enumeration].

EnumerationConst = '#' (EnumElement-Name { '.' EnumElement-Name }
 ['.' 'OTHERS']
 | 'OTHERS').

Within the scope of new definitions of enumerations (primary definitions, supplementary elements of
extensions), the EnumElement may only consist of one name. Several names are only admissible in
order to identify a prevailing enumeration element for an extension.

On the one hand enumerations can be extended by defining sub-enumerations for leafs of hitherto
existing enumerations (in other words enumeration elements which do not feature sub-enumerations). In
the extended definition former leaves now become knots for which no values may be defined.

On the other hand each individual part-enumeration in extensions can be supplemented with further
elements (knots or leaves). Thus the basic enumeration comprises besides the elements mentioned more
potential elements that will only be defined in extensions. At basic level such potential values can be
approached via the value OTHERS in expressions, function arguments and symbol assignations (cf.
chapter 2.13 Expressions, chapter 2.14 Functions and chapter 2.16 Graphic descriptions). However
OTHERS is no admissible value within the scope of the class that the object belongs to. The possibility to
add supplementary elements of enumeration in extensions can be restricted by declaring the partial
enumeration as final (FINAL). This is done either after the last element listed or within the scope of an
extension even without adding new elements.

Circular enumerations (keyword CIRCULAR) cannot be extended.

DOMAIN
 Color = (red,
 yellow,
 green);
 ColorPlus EXTENDS Color = (red (dark_red, orange, crimson),
 green (light_green, dark_green: FINAL),
 blue);
 ColorPlusPlus EXTENDS ColorPlus = (red (FINAL),
 blue (light_blue, dark_blue));

for Color Plus this results in the following admissible values – described via constants:

#red.dark_red #red.orange #red.crimson #yellow #green.light_green #green.dark_green
#blue

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 40

and for ColorPlusPlus:

#blue.light_blue #blue.dark_blue instead of #blue

By indicating FINAL with the shades of green in ColorPlus it is not admissible to define further shades of
green in ColorPlusPlus. FINAL in the subdivision of red in ColorPlusPlus prevents the addition of more
varieties of red in possible extensions of ColourPlusPlus.

2.8.3 Text orientation
For the processing of plans and maps text positions must be determined. It has to be stated which point
of the text the position corresponds to. The horizontal alignment determines whether the position is
situated on the left hand or right hand margin or in the center of the text. The vertical alignment
determines the position in the direction of the text size.

The distance between cap and base corresponds to the size of capital letters. Descenders are placed in
the area base-bottom.

Horizontal and vertical alignment can be understood to signify the following, predefined enumerations:
DOMAIN
 HALIGNMENT (FINAL) = (Left, Center, Right) ORDERED;
 VALIGNMENT (FINAL) = (Top, Cap, Half, Base, Bottom) ORDERED;

Syntax rule:

AlignmentType = ('HALIGNMENT' | 'VALIGNMENT').

Figure 9: Text orientation horizontally (HALIGNMENT) and vertically (VALIGNMENT).

2.8.4 Boolean
The type Boolean features the values true and false. It can be interpreted as the following predefined
enumeration:

DOMAIN
 BOOLEAN (FINAL) = (false, true) ORDERED;

Syntax rule:

BooleanType = 'BOOLEAN'.

2.8.5 Numeric data types
The most important information in connection with numeric data types are the minimum and maximum
value including number of decimals, as well as the scaling factor. Additionally it can be indicated that the
type is circular (keyword CIRCULAR), i.e. that in the last significant digit the maximum value increased by
1 and the minimum value technically have the same meaning (e.g. with angles 0 .. 359 degrees). If the
attribute has been defined as a continuous subdivision of the predecessor attribute (cf. chapter 2.6.1
General comments concerning attributes), the type has to be defined as circular. If the indication of

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 41

minimum and maximum value should be missing (keyword NUMERIC), the domain is regarded as
abstract.

DOMAIN
 Angle1 = 0.00 .. 359.99 CIRCULAR [degree]; !! correct
 Angle2 = 0.00 .. 360.00 CIRCULAR [degree]; !! syntactically correct, but
 !! technically false, since 360.01
 !! subsequently corresponds to the
 !! minimal value 0.00

The number of digits must coincide in minimal and maximum value. By means of scaling it is possible to
describe float-numbers, but then the minimum as well as the maximum value have to be indicated in
mantissa type number representation, i.e. starting with zero (0) and followed by a decimal point (.) the first
digit after the decimal point must differ from zero (0). The scaling of the minimum value must be inferior to
the scaling of the maximum value. However the notation of minimum and maximum value in no way
qualifies as an indication on how to t ransfer these values (i f the domain is defined with 000 .. 999 this
does not mean that the value 7 is transferred as 007). Float -numbers are the exception to this rule. These
are to be transferred in mantissa type number representation and with scaling.

With extensions the minimum, resp. maximum values can only be restricted. Thus the numeric range
becomes smaller. Observe the following situation:

DOMAIN
 Normal = 0.00 .. 7.99;
 Exact EXTENDS Normal = 0.0000 .. 7.9949; !! correct, since Normal
 !! is also representable
 Exact EXTENDS Normal = 0.0000 .. 7.9999; !! false, since rounded
 !! outside of Normal

In order to explain more clearly the significance of a value, a measure unit can be indicated (cf. chapter
2.9 Units). Abstract measure units are only admissible as long as the domain itself remains undefined
(keyword NUMERIC).

The following rules apply for extensions:

• If a concrete base domain features no measure units, then none may appear in extensions.
• Where the base domain employs an abstract measure unit, only such measure units may be used

in extensions, as are extensions of the aforesaid measure unit.
• Where the base domain employs concrete measure units, they cannot be overridden in extensions.

Examples:

UNIT
 foot [ft] = 0.3048 [m];

DOMAIN
 Distance (ABSTRACT) = NUMERIC [Length];
 MeterDist (ABSTRACT) EXTENDS Distance = NUMERIC [m];
 FootDist (ABSTRACT) EXTENDS Distance = NUMERIC [ft];
 ShortMeters EXTENDS MeterDist = 0.00 .. 100.00 [m];
 ShortFeet EXTENDS FussDist = 0.00 .. 100.00 [ft];
 ShortFeet2 (ABSTRACT) EXTENDS ShortMeters = NUMERIC [ft]; !! false: m vs. ft

A scalar system (c f. chapter 2.10.3 Reference systems) can be attributed to a numeric domain.
Thereafter the values refer to the zero point determined by the scalar system. Consequently, they are
absolute values in this scalar system. If in the class of the scalar system the unit is not ANYUNIT, such a
unit has to be indicated with the numeric data type as will be compatible with the reference system. With
regard to a reference system you may indicate the axis referred to by the values. The unit indicated must
be compatible the unit of the corresponding axis. Where this information is omitted, the reference is not
specified but ensues from the subject (e.g. i f you refer to an ellipse when stating a height, elliptic heights

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 42

are meant). If you refer to a different domain, the same reference system should be applicable as in the
former. In this case the indication of the axis may only be omitted where numeric domains are concerned.
With a coordinate domain, the indication of the axis is obligatory. The indication of reference systems
cannot be changed in extensions.

If the numeric value represents an angle, its orientation can be determined. In the case of directions it can
be specified which coordinate system they refer to (defined by its coordinate domain). Thus both zero
direction (azimuth) and sense of rotation are known (cf. chapter 2.8.8 Coordinates). This indication cannot
be changed in extensions.

Besides decimal numbers two more numbers are defined as numeric constants: pi (keyword PI) and e –
base of the natural logarithm (keyword LNBASE).

Syntax rules:

NumericType = (Min-Dec '..' Max-Dec | 'NUMERIC') ['CIRCULAR']
 ['[' UnitRef ']']
 ['CLOCKWISE' | 'COUNTERCLOCKWISE' | RefSys].

RefSys = ('{' RefSys-MetaObjectRef ['[' Axis-PosNumber ']'] '}'
 | '<' Coord-DomainRef ['[' Axis-PosNumber ']'] '>').

DecConst = (Dec | 'PI' | 'LNBASE').

NumericConst = DecConst ['[' UnitRef ']'].

2.8.6 Formatted domains
Formatted domains are based on structures and use their numeric and formatted attributes within one
format. On the one hand this format serves the data exchange (cf. chapter 3.3.11.5 Coding of formatted
domains), on the other hand the definition of both lower and upper limit of the domain.

Syntax rules:

FormattedType = ['FORMAT' 'BASED' 'ON' StructureRef FormatDef]
 [Min-String '..' Max-String]
 | 'FORMAT' FormattedType-DomainRef
 Min-String '..' Max-String.

FormatDef = '(' ['INHERITANCE']
 [NonNum-String] { BaseAttrRef NonNum-String }
 BaseAttrRef [NonNum-String] ')'.

BaseAttrRef = (NumericAttribute-Name ['/' IntPos-PosNumber]
 | StructureAttribute-Name '/' Formatted-DomainRef).

FormattedConst = String.

Primarily a basic definition of a formatted domain defines the structure it is built upon and the format
which is being used. In addition it is possible to define both lower and upper limit of the domain. They may
not extend the limits defined by the structure.

Within the scope of an extension it is possible to refer to an extension of the original structure, to
supplement the format (the inherited part must figure at the beginning and in the interest of clearness it
should be signalized by the keyword INHERITANCE) and to restrict the domain.

On the one hand the format definition may contain constant strings, which do not start with a number (at
the start, at the end or in between the individual attribute references), on the other it may contain direct or
indirect (via structure attributes) attribute references. The attribute reference must either designate a

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 43

numeric attribute or a structure attribute. In the case of a numeric attribute it is possible to define the
number of digits on the left of the decimal point. As a result leading noughts will be introduced if
necessary. The number of decimals will result from the numeric domain. With structure attributes you
must define in accordance with which formatted domain they have to be formatted. The structure must
either tally with the basic structure of the domain or be an extension of it.

2.8.7 Date and time
Whenever indications of date or time do not only consist of one single value (e.g. year, second), we tend
to use formatted domains.

In the interest of compatibility with XML corresponding elements are predefined by INTERLIS:

UNIT
 Minute [min] = 60 [INTERLIS.s];
 Hour [h] = 60 [min];
 Day [d] = 24 [h];
 Month [M] EXTENDS INTERLIS.TIME;
 Year [Y] EXTENDS INTERLIS.TIME;

REFSYSTEM BASKET BaseTimeSystems ~ TIMESYSTEMS
 OBJECTS OF CALENDAR: GregorianCalendar
 OBJECTS OF TIMEOFDAYSYS: UTC;

STRUCTURE TimeOfDay (ABSTRACT) =
 Hours: 0 .. 23 CIRCULAR [h];
 CONTINUOUS SUBDIVISION Minutes: 0 .. 59 CIRCULAR [min];
 CONTINUOUS SUBDIVISION Seconds: 0.000 .. 59.999 CIRCULAR [INTERLIS.s];
END TimeOfDay;

STRUCTURE UTC EXTENDS TimeOfDay =
 Hours(EXTENDED): 0 .. 23 {UTC};
END UTC;

DOMAIN
 GregorianYear = 1582 .. 2999 [Y] {GregorianCalendar};

STRUCTURE GregorianDate =
 Year: GregorianYear;
 SUBDIVISION Month: 1 .. 12 [M];
 SUBDIVISION Day: 1 .. 31 [d];
END GregorianDate;

STRUCTURE GregorianDateTime EXTENDS GregorianDate =
 SUBDIVISION Hours: 0 .. 23 CIRCULAR [h] {UTC};
 CONTINUOUS SUBDIVISION Minutes: 0 .. 59 CIRCULAR [min];
 CONTINUOUS SUBDIVISION Seconds: 0.000 .. 59.999 CIRCULAR [INTERLIS.s];
END GregorianDate;

DOMAIN XMLTime = FORMAT BASED ON UTC (Hours/2 ":" Minutes ":" Seconds);
DOMAIN XMLDate = FORMAT BASED ON GregorianDate (Year "-" Month "-" Day);
DOMAIN XMLDateTime EXTENDS XMLDate = FORMAT BASED ON GregorianDateTime
 (INHERITANCE "T" Hours/2 ":" Minutes
 ":" Seconds);

Practical example:

CLASS Project =
 Start: FORMAT INTERLIS.XMLDateTime "2000-01-01T00:00:00.000" ..
 "2005-12-31T23:59:59.999";
 End: FORMAT INTERLIS.XMLDateTime "2002-01-01T00:00:00.000" ..
 "2007-12-31T23:59:59.999";
END Project;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 44

2.8.8 Coordinates
Coordinates can be defined one, two or three dimensionally, and hence are either a single digit, double
digits or triple digits. It is permissible to add the second or third dimension only in an extension. For every
dimension the numeric domain, as well as perhaps a measure unit and a coordinate system (including
numbers of axis) must be indicated. Only concrete measure units can be indicated. If no reference
system is indicated and if furthermore measure units are not or as length units, the program system that
implements the model may presume that it is dealing with Cartesian coordinates.

Whenever a rotation definition occurs (keyword ROTATION), it is possible within the scope of definitions
of zero directions (cf. chapter 2.8.5 Numeric data types) to refer to such a coordinate reference system.
The rotation definition determines which axis of the coordinate domain corresponds to the zero direction
and which to the direction of a positive right angle. It may be missing in a concrete coordinate definition
and could be added in an extension.

Any indication concerning definition of axis and rotation cannot be changed in extensions.

DOMAIN
 CHCoord = COORD 480000.00 .. 850000.00 [m] {CHLV03[1]},
 60000.00 .. 320000.00 [m] {CHLV03[2]},
 ROTATION 2 -> 1;

In both defined axes the admissible domain is indicated as well as the units and reference system
including the number of axis the coordinates refer to. The actual axes are defined within the reference
system. The rotation definition determines that the zero direction leads from axis #2 to axis #1, in other
words in the Swiss Federal system where value #1 corresponds to east, and value #2 to north, the zero
direction shows north and turns clockwise.

DOMAIN
 WGS84Coord = COORD –90.00000 .. 90.00000 [Units.Angle_DMS] {WGS84[1]},
 0.00000 .. 359.99999 CIRCULAR [Units.Angle_DMS] {WGS84[2]},
 -1000.00 .. 9000.00 [m] {WGS84Alt[1]};

Typically geographic coordinates are represented in degrees and refer to an ellipsoid coordinate system
(e.g. CH1901). Then again the altitude is described in meters. It refers to a special ellipse height system
with one axis.

Syntax rules:

CoordinateType = 'COORD' NumericType
 [',' NumericType [',' NumericType]
 [',' RotationDef]].

RotationDef = 'ROTATION' NullAxis-PosNumber '->' PiHalfAxis-PosNumber.

Unless a minimum of one numeric domain is defined (with NumericType), the corresponding attribute is to
be defined abstract.

2.8.9 Domains of object identifications
Identifiable objects are always labeled with an object identification. In order to make it clear to the system
what storage has to be supplied and how these object identifications have to be generated,
corresponding domains can be defined and assigned to topics resp. classes (cf. chapter 2.5.2 Topics and
chapter 2.5.3 Classes and structures). For the administration of object identifications, mainly also of
baskets, it makes sense to have ordinary attributes with such domains.

Syntax rule:

OIDType = 'OID' ('ANY' | NumericType | TextType).

INTERLIS 2 itself defines the following OID-domains (cf. appendix A The internal INTERLIS-data model):

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 45

DOMAIN
 ANYOID = OID ANY;
 I32OID = OID 0 .. 2147483647; !! positive integer values needing 4 Bytes memory
 STANDARDOID = OID TEXT*16; !! according to appendix D
 !! (only numbers and letters are permitted)
 UUIDOID = OID TEXT*36; !! according to ISO 11578

If ANYOID is used for abstract topics, resp. classes, it is required to expect an object identification whose
exact definition however is to remain open. Otherwise ANYOID can only be used as an attribute domain.
Consequently it is not only the OID itself that belongs to the attribute value, but also the concrete OID
domain.

OID values of textual OID domains must comply with the rules of the XML-ID-type: the first symbol must
be a letter or underscore, followed by letters, numbers, dots, minus sign, underscore; no colons (!), see
www.w3.org/TR/REC-xml.

2.8.10 Blackboxes
By using this data type it is possible to model attributes whose contents cannot be specified. The XML-
version describes an attribute with XML-content and the BINARY version a binary content. This type
cannot be refined in extensions.

Syntax rule:

BlackboxType = 'BLACKBOX' ('XML' | 'BINARY').

2.8.11 Domains of classes and attribute paths
It may make sense that data objects contain references to certain classes and attributes:

Syntax rules:

ClassType = ('CLASS'
 ['RESTRICTION' '(' ViewableRef
 { ';' ViewableRef } ')']
 | 'STRUCTURE'
 ['RESTRICTION' '(' ClassOrStructureRef
 { ';' ClassOrStructureRef } ')']).

AttributePathType = 'ATTRIBUTE'
 ['OF' (ClassType-AttributePath
 | '@' Argument-Name)]
 ['RESTRICTION' '(' AttrTypeDef
 { ';' AttrTypeDef } ')'].

ClassConst = '>' ViewableRef.

AttributePathConst = '>>' [ViewableRef '->'] Attribute-Name.

By indicating structure any structure or class, by indicating class (also permissible as extension of
STRUCTURE) any class (but no structures) are admitted. If only certain structures, resp. classes and
their extensions are to be admitted, these have to be listed (RESTRICTION). In extensions all admissible
structures, resp. classes have to be listed again. They cannot contradict the basic definition. As soon as
such restrictions have been defined, STRUCTURE no longer can be extended by CLASS.

By means of indicating ATTRIBUTE a certain attribute path type is admitted. It may be stated that it
should belong to a class (not a subclass!) in accordance with another definition (OF). It is possible to refer
either to a ClassType-Attribute or as in the case of the definition of a function (cf. chapter 2.14 Functions)
to a different argument. Furthermore all possible attribute types can be restricted (RESTRICTION). The
following are suitable as constants: names of the attributes of classes, structures, associations and views.

http://www.w3.org/TR/REC-xml
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 46

The corresponding class name can be stated explicitly or is derived from the context resp. from the
reference to another attribute or another argument (OF).

2.8.12 Line strings

2.8.12.1 Geometry of the line string
Practically a curve segment is a 1-dimensional structure which has no splits, no corners and no double
points of any type (see figures 10 and 11). Curve segments are smooth and unique. Straight line
segments, circle arcs, segments of parabolas and clothoides are examples of curve segments. Every
curve segment has two boundary points (start point and end point, which are not allowed to be identical.
The other points of a curve segment are called inner points. These form the interior of the curve segment.

Exact definition (mathematical terms which are not explained here but whose definition
can be found in textbooks are written "in italics and in quotes"): Curve segment means a
subset of the "3-dimensional" "Euclidian space" (hereafter space for short), which is the
"image set" of a "smooth" and "injective" "mapping" of an "interval" (of the "numerical
straight line"). Start point and end point of the curve segment are the images of the end
point of the interval. Planar curve segment means a curve segment lying in a plane ("2-
dimensional "subspace" of the space).

Figure 10: Examples of planar curve segments.

.

Figure 11: Examples of planar sets not being curve segments (a double circle indicates "not smooth"
and a double square "not injective").

A line string is a finite sequence of curve segments. Except for the first curve segment, the start point of
every curve segment corresponds to the end point of the preceding curve segment. These points are
called control points of the line string. Practically a line string can have multiply used curve segments,
curve segments with common base points, intersecting curve segments and curve segments starting or
ending in the interior of other curve segments (see figures 12 and 13). A simple line string contains no
self-intersection points (see figure 14). In addition, for a closed simple line the start point of the first curve
segment and the end point of the last curve segment are identical.

Exact definition (mathematical terms which are not explained here but whose definition
can be found in textbooks are written "in italics and in quotes"): Line strings means a
subset of the space, which is the "image set" of a "continuous" and "partially smooth" (but

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 47

not necessarily "injective") "mapping" of an "interval" (the so-called characteristic
mapping) and which contains only a finite number of "non smooth points". A "non smooth
point" is called vertex. With a closed line string start and end point are identical. A line
string, whose characteristic mapping is also "injective", except for its start and end point
that are identical, is called a simple line string.

Figure 12: Examples of planar line strings.

Figure 13: Examples of planar sets that are not line strings (the double circle means "not continuous"
and the double rhombus "not image of an interval").

Figure 14: Examples of (planar) simple line strings.

2.8.12.2 Line strings with straight line segments and circle arcs as predefined curve segments
Line strings exist as directed (DIRECTED POLYLINE) or undirected (POLYLINE) line strings, and may as
well be used within the scope of surfaces and tessellations (c f. chapter 2.8.13 Surfaces and
tessellations).

The definition of a concrete value domain of a line string always requires the specification of the
admissible forms of curve segments by means of enumeration, e.g. straight line segments (keyword
STRAIGHTS), circle arcs (keyword ARCS) or other possibilities (cf. chapter 2.8.12.3 Other forms of curve
segments) and furthermore the indication of the domain of the vertices. Within an abstract value domain
of a line string these specifications may be omitted. The following rules apply for domain extensions:

• A line can only be reduced but not completed by new types.
• The coordinate domain indicated within the scope of a line string value domain must be a

restriction of the coordinate domain of the original line string value domain, provided the latter has
been defined.

Curve segments are always considered an extension of the basic structure 'LineSegment'. The
coordinate domain applied therein is the same as the one defined in the definition of the line string.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 48

STRUCTURE LineSegment (ABSTRACT) =
 SegmentEndPoint: MANDATORY LineCoord;
END LineSegment;

STRUCTURE StartSegment (FINAL) EXTENDS LineSegment =
END StartSegment;

STRUCTURE StraightSegment (FINAL) EXTENDS LineSegment =
END StraightSegment;

STRUCTURE ArcSegment (FINAL) EXTENDS LineSegment =
 ArcPoint: MANDATORY LineCoord;
 Radius: NUMERIC [LENGTH];
END ArcSegment;

The first curve segment of a line string is always a start segment. The start segment only consists of the
start point itself, which at the same time is the end point of the start segment. The straight-line segment
has an end point and thereby determines a straight from the end point of the predecessor curve segment
to its end point. Both start segment and straight line segment do not require any further specifications.
Thus the corresponding extensions of the LineSegment are void. Two successive vertices
(SegmentEndPoints) may not coincide in the projection.

A circle arc segment describes a curve segment that appears as a true circle arc segment in the
projection. In addition to the end point an intermediate point describes the circle arc segment. It is only of
significance in connection with the geometry. With 3-dimensional coordinates we use linear interpolation
for the height on the circle arc segment. You may imagine this curve as the thread of a cylindrical screw
in perpendicular position on the projection plane. The intermediate point is not a vertex of the line string. It
should be positioned as exactly as possible in the middle between start and end point. Since the
intermediate point is indicated with the same precision as the vertices, the calculated and the effective
radius may differ widely. Whenever the effective radius is indicated it is relevant for the definition of the
arc circle. Then the intermediate point will only determine which of the four possible circle arcs is the one
desired. However even in this case the intermediate point may only differ by 2 units from the trace of the
circle arc calculated from the radius.

It can be required that a string line must be a simple string line, i.e. practically that it neither intersects
itself and above all that multiple use of the same curve segment is impossible (keyword WITHOUT
OVERLAPS). If a circle arc and a straight line (resp. a second circle arc) as successive curve segments
of a line string not only have a common vertex but also a common inner point (definition see above), then
this is also permitted in the case of a simple string line, provided that the circle segment detached from
the straight (resp. the double circle segment detached from the other circle arc) have a height of arrow
smaller or equal the decimal specified after WITHOUT OVERLAPS> (see figure 15a). There are two
reasons for this regulation: On one hand for numeric reasons and because in certain cases small
overlaps in arcs cannot be avoided (tangential arcs). On the other hand, when transferring data that
originally has been registered in graphics even more important overlaps (e.g. of several centimeters)
have to be tolerated, unless one would be prepared to face an enormous workload to repair these
overlaps. Tolerances have to be listed in the same units as vertex coordinates. For numeric reasons it
must be greater than nought. They cannot be overridden and are mandatory in the case of both surfaces
and tessellations.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 49

Figure 15: a) Height parameter (of arrow) may not exceed the given tolerance; b) inadmissible

overlap of polylines since another vertex is situated between vertex and intersection; c) inadmissible
overlap of polylines since there exists no common vertex.

Within the scope of value domain definitions and attribute extensions, undirected string lines can be
extended into directed string lines (cf. chapter 2.8.13.4 Extensibility).

When line strings are directed, their direction always has to be conserved (even when transferring data).

For vertices the value domain of the coordinates is defined. By means of the existence constraint
REQUIRED IN (c f. chapter 2.12 Constraints and chapter 2.13 Expressions) it is further possible to
demand that coordinates may not be arbitrary but have to correspond to the points of certain classes.

If the coordinate type of the vertices is abstract, then the line string has to be declared abstract as well.

Syntax rules:

LineType = (['DIRECTED'] 'POLYLINE' | 'SURFACE' | 'AREA')
 [LineForm] [ControlPoints] [IntersectionDef]
 [LineAttrDef].

LineForm = 'WITH' '(' LineFormType { ',' LineFormType } ')'.

LineFormType = ('STRAIGHTS' | 'ARCS'
 | [Model-Name '.'] LineFormType-Name).

ControlPoints = 'VERTEX' CoordType-DomainRef.

IntersectionDef = 'WITHOUT' 'OVERLAPS' '>' Dec.

In order to be able to assign different attributes to different segments of the boundary where surfaces are
concerned (cf. chapter 2.8.13 Surfaces and tessellations), it is possible to define further attributes for the
actual line string objects (so-called line attributes, rule LineAttrDef only with SURFACE and AREA).
However this does not result in the concept of a clearly defined division of the boundary. From the
conceptual point of view it is insignificant whether subsequent curve segments with equal attribute values
are considered as individual line string objects or as one whole line string (cf. chapter 3.3.11.13 Coding of
surfaces and tessellations). The structure employed for the definition may only feature local attributes and
function calls. When a surface or tessellation attribute for which a line attribute has been defined by
means of structure, is extended, then the extended attribute must either not feature a line attribute or its
structure must be abstract extension of the basic structure. With function calls the resulting type must be
a local attribute.

Syntax rule:

LineAttrDef = 'LINE' 'ATTRIBUTES' Structure-Name.

2.8.12.3 Other forms of curve segments
Besides straight line segments and circle arcs it is possible to define other forms of curve segments.
Besides their names it also has to be specified according to which structure a curve segment is

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 50

described. These definitions of such curve segments are only admissible within the scope of a contract,
since we may not assume that a system supports any form of curves.

Syntax rule:

LineFormTypeDef = 'LINE' 'FORM'
 { LineFormType-Name ':' LineStructure-Name ';' }.

A line structure must always be an extension of the LineSegment as defined by INTERLIS (c f. chapter
2.8.12.2 Line strings with straight line segments and circle arcs as predefined curve segments).

2.8.13 Surfaces and tessellations

2.8.13.1 Geometry of surfaces
In most cases planar surfaces are sufficient for the modeling of geo-data. In addition INTERLIS also
supports planar general surfaces. Practically a planar general surface is limited by one exterior and
possibly by one or several interior boundaries (see figure 20). The boundary lines themselves must
consist of simple line strings that from a geometrical point of view can be combined into closed simple line
strings. Furthermore they must be positioned in such a manner that from any point in the interior of the
surface to any other point in the interior of the surface there exists a way that neither intersects a
boundary line nor contains vertices of a boundary line (see figure 19). As long as this restriction is not
violated, boundaries may meet in vertices. In such situations there are several conceivable possibilities
that would allow dividing the boundary of the surface as a whole into individual line strings (see figure 22).
INTERLIS does not insist on one specific possibility. If such a surface is transferred several times, a
different possibility may occur in each different transfer.

Exact definitions (mathematical terms which are not explained here but whose definition
can be found in textbooks are written "in italics and in quotes"):

Surface element means a subset of the space, which is the "image set" of a "smooth" and
"injective" "mapping" of a "planar" "regular polygon" (see figures 16 and 17).

Surface means the union F of a finite number of surface elements, which are "connected"
and comply with the following condition: For every point P of the surface there exists a
"neighborhood", which is a deformation (i.e. a "homeomorph mapping") of a planar
regular polygon. If point P is a deformation of a boundary point of the polygon, it is called
boundary point of F, otherwise inner point of F. It holds: the "boundary" (i.e. the set of all
boundary points) of a surface is the union of a finite number of curve segments, which
meet only in boundary points (start or end points). A planar surface is a surface being a
subset of a plane. It holds: The boundary of a "simple continuous" planar surface
(graphically speaking: a surface without any holes) is a simple closed line string, a so-
called outer boundary. The boundary of a "n-times continuous" planar surface (graphically
speaking: a surface with n-1 holes) consists of the corresponding outer boundary and n-1
other simple closed line strings (the so-called inner boundaries). The outer boundary and
all the inner boundaries have no common points. A surface part cut out by an inner
boundary is called an enclave (see figures 18, 19 and 20).

A general surface is a surface with an additional finite number of singular points but with
"connected" interior (set of inner points). A point is called singular point i f there exists a
deformation of the point together with a "neighbourhood" into a planar propeller set, the
point itself into the center. Propeller set means the union of a finite number of triangle
surfaces meeting at exactly one point called center. Planar general surface means a
general surface being subset of a plane (see figure 21). It holds: There are different
possibilities to compose the boundary of a planar general surface by a finite number of

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 51

closed planar line strings which have a maximum of a finite number of common points
and each a maximum finite number of double points (see figure 22).

Figure 16: Examples of surface elements.

Figure 17: Examples of point sets in space, which are not surface elements (here a double circle

means "not smooth").

Figure 18: Examples of surfaces in the space.

Figure 19: Examples of planar point sets that are not surfaces (a double circle marks a "singular

point").

Figure 20: Planar surface with boundaries and enclaves.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 52

 a) b)

Figure 21: a) Examples of planar general surfaces; b) Examples of planar sets that are not general

surfaces, because their interior is not connected. But these planar sets can be subdivided into general
surfaces ("---" shows the subdivision into surface elements and "===" the subdivision into general

surfaces).

general surface possibility a possibility b possibility c
2 singular points 1 outer boundary 1 outer boundary with 1 outer boundary
 2 inner boundaries 1 double point with 2 double points
 2 common points 1 inner boundary
 1 common point

Figure 22: Different possible subdivisions of the boundary of a general surface.

Along with the definition of (general) surfaces, resp. (general) surfaces of a tessellation we determine
beyond which tolerance curve segments of the boundary may not overlap (for all concrete definitions of
surfaces and tessellations, WITHOUT OVERLAPS must either be directly specified or inherited). With
surfaces prohibition of overlaps, resp. intersection does only apply to curve segments of one individual
line string but to all curve segments of all line strings of the surface boundary. In the case of surfaces of a
tessellation it even applies to all line strings connected with the tessellation. Furthermore and in
accordance with the definition of the (general) surface, line strings that are not part of the boundary of a
(general) surface are excluded.

Figure 23: Disallowed boundary configurations for tessellations.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 53

2.8.13.2 Surfaces

Figure 24: Individual surfaces (SURFACE).

For surfaces that partially or entirely overlap, i.e. which do not only have boundary points in common, the
geometrical attribute type SURFACE is available (see figure 24). This type is called surface. A surface
consists of one outer and possibly several inner boundaries (around the enclaves). Each boundary
consists of at least one line string. Besides its geometry each line string features the defined attributes
(rule LineAttrDef).

2.8.13.3 Surfaces of a tessellation

Figure 25: Tessellation (AREA).

(Planar) tessellation signifies a finite set of (general) surfaces and environments that cover a layer without
overlaps.

For tessellations the geometrical attribute type AREA is at your disposal.

A maximum of one surface of the tessellation (or exactly one with the additional keyword MANDATORY),
but never its environment, is assigned to the area object. It is not admissible that each of two surfaces of
the tessellation with a common boundary does not correspond to an area object.

Thus each individual area object corresponds to a surface. As a result the same implicit structure applies
to surfaces and to area objects. However additional consistency constraints apply:

• String lines of a tessellation must always be true boundaries. Hence there are no line strings with
the same surface on either side (see figure 23). This is also ruled out by the definition of a surface.

• If there are defined area objects on either side of a line string, then each curve segment (join
between two vertices) of one area object must in terms of geometry and attributes correspond
exactly to the curve segment of the other area object.

• If line attributes have been defined for these lines, then they must feature the same values for
coinciding lines of the two neighbouring areas.

Tessellations may not occur within substructures.

In order to be able to refer to line strings of a tessellation as individual objects (and namely as one object
even if the line string is the boundary of two area objects), then AREA INSPECTION is at your disposal
(cf. chapter 2.15 Views).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 54

2.8.13.4 Extensibility
Surfaces may be extended into areas. The extension of a string line into an area is inadmissible, since
with a surface several string lines have to be expected, whereas the definition of the line string only
implies one line string.

Independent surfaces and surfaces of a tessellation can be extended in two respects:

• When it is 'SURFACE' that is primarily defined and hence overlaps are allowed, this can be
replaced by 'AREA' in extensions, since this will not violate the basic definition.

• Further line attributes can be attached.

2.9 Units
Units are always described as a term and (in [] brackets) a contraction. Both term and contraction must
be names. Where the contraction is omitted it is the same as the term itself. Depending on the type of unit
further specifications may follow. In actual use of a unit it is always the contraction that occurs. Hence the
term itself is only of documentary character.

2.9.1 Base units
Base units are meters, seconds etc. They need not be specified any further. However base units can also
be defined as abstract (keyword ABSTRACT), i f the unit itself is yet unknown, but the matter described is
clear (e.g. temperature, money). No contraction is assigned to abstract units. Concrete units cannot be
extended.

Examples:

UNIT
 Length (ABSTRACT);
 Time (ABSTRACT);
 Money (ABSTRACT);
 Temperature (ABSTRACT);
 Meter [m] EXTENDS Length;
 Second [s] EXTENDS Time;
 SwissFranc [CHF] EXTENDS Money;
 Celsius [C] EXTENDS Temperature;

INTERLIS itself defines the abstract unit ANYUNIT. All other units inherit this directly or indirectly (cf.
chapter 2.10.3 Reference systems). The following units have been defined directly (internally) by
INTERLIS:

UNIT
 ANYUNIT (ABSTRACT);
 DIMENSIONLESS (ABSTRACT);
 LENGTH (ABSTRACT);
 MASS (ABSTRACT);
 TIME (ABSTRACT);
 ELECTRIC_CURRENT (ABSTRACT);
 TEMPERATURE (ABSTRACT);
 AMOUNT_OF_MATTER (ABSTRACT);
 ANGLE (ABSTRACT);
 SOLID_ANGLE (ABSTRACT);
 LUMINOUS_INTENSITY (ABSTRACT);
 MONEY (ABSTRACT);

 METER [m] EXTENDS LENGTH;
 KILOGRAM [kg] EXTENDS QUANTITY;
 SECOND [s] EXTENDS TIME;
 AMPERE [A] EXTENDS ELECTRIC_CURRENT;
 DEGREE_KELVIN [K] EXTENDS TEMPERATURE;
 MOLE [mol] EXTENDS AMOUNT_OF_MATTER;
 RADIAN [rad] EXTENDS ANGLE;
 STERADIAN [sr] EXTENDS SOLID_ANGLE;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 55

 CANDELA [cd] EXTENDS LUMINOUS_INTENSITY;

Remark: In appendix F Definition of units the most common units have been assembled in an extended
type model.

2.9.2 Derived units
Multiplying or dividing derived units with constants or functions can convert them converted into different
units. Example:

UNIT
 Kilometer [km] = 1000 [m];
 Centimeter [cm] = 1 / 100 [m];
 Inch [in] = 0.0254 [m]; !! 1 inch equals 2.54 cm
 Fahrenheit [oF] = FUNCTION // (oF + 459.67) / 1.8 // [K];

Data in kilometers have to be multiplied by one thousand to become the equivalent in meters. Data in
inches have to be multiplied by 2.54 to become the equivalent in centimeters. Add 456.67 to data in
degrees Fahrenheit and then divide the result by 1.8 in order to calculate the same temperature in
degrees Kelvin.

A derived unit automatically is considered an extension of the same abstract unit it can be converted into.

2.9.3 Combined units
Combined units (e.g. km per hour) are the result of a multiplication or division of other units (basic units,
derived or combined units). Combined units can also be defined as abstract units. They then must refer
entirely to other abstract units.

The units used in the concrete extension must therefore be a concrete extension of the units appearing in
the abstract definition. Example:

UNIT
 Velocity (ABSTRACT) = (Length / Time);
 Kilometer per hour [kmph] EXTENDS Velocity = (km / h);

Syntax rules:

UnitDef = 'UNIT'
 { Unit-Name
 ['(' 'ABSTRACT' ')' | '[' UnitShort-Name ']']
 ['EXTENDS' Abstract-UnitRef]
 ['=' (DerivedUnit | ComposedUnit)] ';' }.

DerivedUnit = [DecConst { ('*' | '/') DecConst }
 | 'FUNCTION' Explanation] '[' UnitRef ']'.

ComposedUnit = '(' UnitRef { ('*' | '/') UnitRef } ')'.

UnitRef = [Model-Name '.' [Topic-Name '.']] UnitShort-Name.

2.10 Dealing with meta objects

2.10.1 General comments concerning meta objects
In the sense of INTERLIS 2 meta objects are objects that are of significance within the scope of
descriptions of application models. This is of use in reference systems and graphic symbols.

The construction of reference system objects or symbol objects must be defined with the usual means of
classes and structures in either a REFSYSTEM MODEL or SYMBOLOGY MODEL. Reference system
classes, axis classes, resp. symbol classes must be extensions of the classes COORDSYSTEM,

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 56

REFSYSTEM, AXIS, resp. SIGN supplied by INTERLIS. These again are extensions of the class
METAOBJECT. This class possesses an attribute name that must be unequivocal within the scope of all
meta objects of one basket.

For the description itself of a practical model the meta object as such is not needed. It is enough to know
the name as the representative of the meta object. Nevertheless for a running system as a rule the meta
objects should be known completely, i.e. with all their attributes. Hence it must be clear for any run time
system which basket contains a meta object of a certain name. Before meta objects (resp. their names)
can to be used in models), they have to be declared. In order to achieve this, a basket name is
introduced, the topic presumed is stated, and then (per class) the names of the expected objects are
enumerated (rule MetaDataBasketDef). The basket name can also be defined as the extension of a name
already introduced (EXTENDS). Consequently the corresponding topic must be the same as with the
basic name or an extension of it.

If a meta object is referred to (rule MetaObjectRef) under the extended basket-name, then the name of
the meta object must figure either there or in an inherited definition. Any run time system will first try to
find the meta object in its corresponding basket. If no such meta object is found the search continues in
accordance with the basket-names that have been directly or indirectly inherited. Thus meta objects can
be prepared and refined on several levels. For example to begin with common graphic symbols can be
defined, which later on are refined and supplemented at regional level. How to refer to the concrete
basket depending on the basket-name is up to the run time system employed.

In a t ranslated application model (c f. chapter 2.5.1 Models) a basket-name can be assigned to a concrete
basket that only contains translations (METAOBJECTS_TRANSLATION objects; cf. appendix A The
internal INTERLIS-data model), thereby translating those meta objects that have been introduced by the
corresponding basket in the model taken as a basis. If this model itself is a translation it is also possible to
assign to this basket name a concrete basket that only contains translations. If the model is not a
translation, then the basket name can be assigned a concrete basket that contains no translations (i.e. no
METAOBJECT_TRANSLATION objects.

Syntax rules:

MetaDataBasketDef = ('SIGN' | 'REFSYSTEM') 'BASKET' Basket-Name
 Properties<FINAL>
 ['EXTENDS' MetaDataBasketRef]
 '~' TopicRef
 { 'OBJECTS' 'OF' Class-Name ':' MetaObject-Name
 { ',' MetaObject-Name } } ';'.

MetaDataBasketRef = [Model-Name '.' [Topic-Name '.']] Basket-Name.

MetaObjectRef = [MetaDataBasketRef '.'] Metaobject-Name.

If in the current context only one meta data basket name is necessary, the reference to the meta data
basket (MetaDataBasketRef) must not be indicated in the meta object reference.

2.10.2 Parameters
By means of parameters those properties can be designated in the meta model that do not concern the
meta object itself but its use within the application. Their definition is introduced by the keyword
PARAMETER and it is constructed in a manner similar to the definition of attributes.

2.10.2.1 Parameters for reference and coordinate systems
For reference and coordinate systems, resp. their axis only the predefined parameter Unit is admissible.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 57

If you refer to a reference or coordinate system (rule RefSys) within the definition of a numeric data type
(cf. chapter 2.8.5 Numeric data types) or a coordinate type (cf. chapter 2.8.8 Coordinates), then a unit
must be indicated which is compatible with the unit of the corresponding axis of the coordinate system,
resp. the sole axis of the reference system (cf. chapter 2.10.3 Reference systems).

2.10.2.2 Parameters of symbols
Definitions of parameters of symbols are arbitrary. These parameters correspond to the specifications
(e.g. point symbol identification, position, rotation) that have to be supplied to a graphic system in order to
enable graphic representation. To start with the symbol has to be selected. This is done by defining a
parameter for the reference to the symbol class within which the parameter is defined (METAOBJECT).
Such a parameter of a symbol may also be a reference to another metaobject (METAOBJECT OF). In
both cases a metaobject-reference will be indicated within the application (cf. chapter 2.16 Graphic
descriptions), i.e. both basket reference-name and meta object-name will be indicated. Thus the
respective tool can determine the real basket-identification and meta object-identification.

Besides these special cases of parameters, parameters can be defined in the same way as attributes.

Syntax rule:

ParameterDef = Parameter-Name Properties<ABSTRACT,EXTENDED,FINAL>
 ':' (AttrTypeDef
 | 'METAOBJECT' ['OF' MetaObject-ClassRef]) ';'.

2.10.3 Reference systems
Without further specifications numeric values and coordinates indicate differences, they do not have a
defined absolute reference. To achieve this, a coordinate system, resp. a scalar system must be defined.
The model definition will be executed in a REFSYSTEM MODEL. In INTERLIS the following classes are
at your disposal:

CLASS METAOBJECT (ABSTRACT) =
 Name: MANDATORY NAME;
UNIQUE Name;
END METAOBJECT;

STRUCTURE AXIS =
 PARAMETER
 Unit: NUMERIC [ANYUNIT];
END AXIS;

CLASS REFSYSTEM (ABSTRACT) EXTENDS METAOBJECT =
 END REFSYSTEM;

CLASS COORDSYSTEM (ABSTRACT) EXTENDS REFSYSTEM =
 ATTRIBUTE
 Axis: LIST {1..3} OF AXIS;
END COORDSYSTEM;

CLASS SCALSYSTEM (ABSTRACT) EXTENDS REFSYSTEM =
 PARAMETER
 Unit: NUMERIC [ANYUNIT];
END SCALSYSTEM;

In extensions it is possible to add other typical attributes for this kind of scalar and coordinate systems
and even the unit can be replaces by extensions (syntax for parameter definitions cf. chapter 2.10.2
Parameters and chapter 2.5.3 Classes and structures). However this unit will have to be compatible with
a unit defined in the value domain (cf. chapter 2.9 Units).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 58

2.11 Run time parameters
Besides the actual data and meta data, individual data elements can be defined that ought to be supplied
by a system for processing, evaluating or graphic representation. They are called run time parameters.

Syntax rule:

RunTimeParameterDef = 'PARAMETER'
 { RunTimeParameter-Name ':' AttrTypeDef ';' }.

Tessellations (keyword AREA) are not admissible for run time parameters. Since run time parameters
define conditions for systems that go beyond the language INTERLIS 2, they can only be defined within
those systems that contracts have been signed for.

Typical run time parameters are for example scale of representation or current date.

2.12 Constraints
Constraints serve to define restrictions the objects have to comply with.

Constraints referring to one single object are described by a logical expression relating to the attributes of
the objects (see next chapter). Therein it is possible to define constraints that are obligatory and apply
peremptorily to all objects (keyword MANDATORY), and others which only apply as a general rule. In the
latter case it is indicated which percentage of the instances of a class must normally comply with the
constraint (rule PlausibilityConstraint).

By stating an existence-constraint (rule ExistenceConstraint) we require that the value of an attribute of
each object of the constraint-class exists in a certain attribute of an instance of another class. This is only
possible if the constraint attribute is compatible with the other attribute and has the following effects:

• If the domain of the constraint attribute equals the domain of the other attribute or one of its
extensions, the constraint value must exist in the required attribute of another instance.

• If the domain of an attribute is a structure, all attributes contained therein are compared.
• If the domain of the other attribute is a coordinate or the domain of the constraint attribute a

polyline, surface or tessellation with the same or extended coordinate domain, then all coordinates
of the vertices of the polyline, surface or tessellation must occur within the required attribute of
another instance.

Uniqueness constraints are introduced with the keyword UNIQUE (rule UniquenessConstraint).

Conceptually signifies "globally" that all existing objects in any basket must fulfill these requirements.

It is possible to demand that within a structure, class or association, a certain combination of attributes of
sub-structures defined by BAG of or LIST OF or one of the line attributes of geometrical domains
SURFACE or AREA be locally (LOCAL) unequivocal, i.e. within the scope of all structural elements
assigned to the current object or structural element.

Example:
CLASS A =
 K: (A, B, C);
 ID: TEXT*10;
UNIQUE K, ID;
END A;

A constraint is considered fulfilled, if an attribute whose domain is undefined is connected with a
uniqueness constraint.

With constraints that refer to the class (SET CONSTRAINT), it is possible to define conditions that will
apply to the total amount of objects of the class (resp. the section that complies with the restricting

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 59

WHERE-constraint). Functions that are used within this constraint expect a set of objects (OBJECTS OF)
on an argument (usually on the first). In order to hand over the total amount of objects of this class (resp.
the section that complies with the WHERE-constraint) to this argument, ALL (without indicating its own
class) is introduced. Since such consistency constraints do not refer to the individual object, it is
impossible to touch upon the values of attributes. Hence for all further arguments and for comparisons
only constants, run time parameters, class types as well as attribute types and other function calls which
fulfill this restriction, are considered suitable.

Examples:

CLASS B =
 Type: (a, b, c);
 Geometry: SURFACE ...;
SET CONSTRAINT WHERE Type = #a :
 areAreas(ALL, UNDEFINED, >> Geometry);
END B;

STRUCTURE S =
 Geometry: SURFACE ...;
END S;

CLASS C =
 Surfaces: BAG OF S;
SET CONSTRAINT
 areAreas(ALL, >> Surfaces, >> S->Geometry);
END;

The objects of class B, whose type is a, should form an AREA since the standard function Areas (cf.
chapter 2.14 Functions) is being used. All surfaces (in accordance with the sub-structure Surfaces) of the
objects of class C form a tessellation.

More extensive constraints must be defined within views (e.g. a view which connects a certain class with
itself) and thus allow to compare any attribute combination with all other objects of the class). It is
peremptory that such views be defined within the data model.

Constraints that extend to a multitude of objects (above all uniqueness constraints) are not always
entirely controllable, since this control can only be executed with locally available baskets. Nevertheless
conceptually they apply globally (except with meta models, cf. appendix E Uniqueness of user keys).

Syntax rules:

ConstraintDef = (MandatoryConstraint
 | PlausibilityConstraint
 | ExistenceConstraint
 | UniquenessConstraint
 | SetConstraint).

MandatoryConstraint = 'MANDATORY' 'CONSTRAINT' Logical-Expression ';'.

PlausibilityConstraint = 'CONSTRAINT'
 ('<=' | '>=') Percentage-Dec '%'
 Logical-Expression ';'.

ExistenceConstraint = 'EXISTENCE' 'CONSTRAINT'
 AttributePath 'REQUIRED' 'IN'
 ViewableRef ':' AttributePath
 { 'OR' ViewableRef ':' AttributePath } ';'.

UniquenessConstraint = 'UNIQUE' ['WHERE' Logical-Expression ':']
 (GlobalUniqueness | LocalUniqueness) ';'.

GlobalUniqueness = UniqueEl.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 60

UniqueEl = ObjectOrAttributePath { ',' ObjectOrAttributePath }.

LocalUniqueness = '(' 'LOCAL' ')'
 StructureAttribute-Name
 { '->' StructureAttribute-Name } ':'
 Attribute-Name { ',' Attribute-Name }.

SetConstraint = 'SET' 'CONSTRAINT' ['WHERE' Logical-Expression ':']
 Logical-Expression ';'.

It is possible to only subsequently define consistency constraints for a certain class or association
(typically following the definition of an association).

Syntax rule:

ConstraintsDef = 'CONSTRAINTS' 'OF' ClassOrAssociationRef '='
 { ConstraintDef }
 'END' ';'.

2.13 Expressions
Generally expressions (Expression) are used for example as arguments of functions or in constraints and
selections. With logical expressions (Logical-Expression) the result type must be Boolean. Expressions
refer to a context object (i.e. an object that constraints are formulated for. Proceeding from this object it is
possible to refer to an attribute, a structure element, a function etc. Such items as well as comparison
values such as constants und run time parameters are interlaced as factors in predicates. A predicate is a
statement that can either be correct or false. By means of Boolean operators predicates can be made into
a logical expression.

Syntax rules:

Expression = Term.

Term = Term1 { 'OR' Term1 }.

Term1 = Term2 { 'AND' Term2 }.

Term2 = Predicate [Relation Predicate].

Predicate = (Factor
 | ['NOT'] '(' Logical-Expression ')'
 | 'DEFINED' '(' Factor ')').

Relation = ('==' | '!=' | '<>' | '<=' | '>=' | '<' | '>').

Remarks concerning the significance of these syntax rules:

• In accordance with the syntax rules for terms the most forcible obligation is the comparison
(relation), followed by AND and OR.

• NOT followed by the logical expression in brackets demands the negation of this expression.
• Comparison of factors. Depending on the type of factor, certain comparisons are inadmissible:

- With string types only Equality (==) and Inequality (!=, <>) are admissible. Further comparisons
have to be realized by means of functions. Above all it is of major importance to clearly define
how regional particularities such as umlauts or accent marks should be treated.

- With numeric data type and structured domains comparisons are defined as usual. More and
less comparisons are not practical with circular data type.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 61

- Coordinates as a whole can only be examined with respect to their equality or inequality. All
other comparisons are only available for their separate components (rule Factor).

- With enumerations more and less comparisons are only admissible i f the enumeration has been
defined as ordered. Equivalence means exact equivalence. If all sub-elements of a node are
included as well, then the function isEnumSubVal has to be used.

- Lines can only be tested as to whether they are undefined (== UNDEFINED).

- A factor can also designate an object. Then it is possible to examine it in terms of Definition,
Equality and Inequality.

• If a factor not only consists of the item itself but also of the path leading to it, the item is always
considered undefined provided any attribute of the path is undefined. Thus the built-in function
DEFINED (a.b) is equal to (a.b != UNDEFINED).

• Any expression will be examined from left to right but only until its resulting value appears to be
definite. In other words terms joined with OR will only be evaluated if the value up to this point is
false. On the other hand terms joined with AND will only be evaluated if the value up to this point is
true.

Factors can be formed according to the following syntax rules:

Factor = (ObjectOrAttributePath
 | (Inspection | 'INSPECTION' Inspection-ViewableRef)
 ['OF' ObjectOrAttributePath]
 | FunctionCall
 | 'PARAMETER' [Model-Name '.'] RunTimeParameter-Name
 | Constant).

ObjectOrAttributePath = PathEl { '->' PathEl }.

AttributePath = ObjectOrAttributePath.

PathEl = ('THIS'
 | 'THISAREA' | 'THATAREA'
 | 'PARENT'
 | ReferenceAttribute-Name
 | AssociationPath
 | Role-Name ['[' Association-Name ']']
 | Base-Name
 | AttributeRef).

AssociationPath = ['\'] AssociationAccess-Name.

AttributeRef = (Attribute-Name (['[' ('FIRST'
 | 'LAST'
 | AxisListIndex-PosNumber) ']'])
 | 'AGGREGATES').

FunctionCall = [Model-Name '.' [Topic-Name '.']] Function-Name
 '(' Argument { ',' Argument } ')'.

Argument = (Expression
 | 'ALL' ['(' RestrictedClassOrAssRef | ViewableRef ')']).

Factors can refer to objects and their attributes. Step by step it is possible to set up entire object-paths
within this procedure. Each construction opens the path from the at the time current object to the next.
The first current object results from the context, e.g. an object of the class that a constraint is being
defined for.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 62

• THIS: Designates the so-called context-object, i.e. the current object of a class, a view or a graphic
definition, which requires an object-path. THIS e.g. is to be indicated when calling a function that
features ANYCLASS or ANYSTRUCUTURE as parameter.

• THISAREA and THATAREA: Designates an area object on whose common boundary the current
line string object can be found. The application of THISAREA and THATAREA is only possible
within the scope of the inspection of a tessellation (cf. chapter 2.15 Views).

• PARENT: Designates super structure-element or super-object of the current structure element or
object. The view must be an ordinary inspection (no area inspection) (cf. chapter 2.15 Views).

• Indication of reference attributes: designates the object that is assigned to the current object that is
assigned from the current object, resp. the current structure via the indicated reference attribute.

• Indication of role: The indication of role is valid provided one single corresponding role exists. The
indication of role may either point to an initial role (according to which the current object is related
to the association reference) or to a target role (according to which the association reference is
related with the reference object). Whenever the indication of role is supplemented with the
reference name, it can only point to initial roles. Depending on the position of the path element
within the path the roles are searched for in a different manner. If the indication of role is the first
path element within the path, then the role is searched for in all the relationship accesses within the
class, provided the path can be used in their context. If the indication of role is a following element
of the path, the role is searched for in all the associations available within the topic where the class
is defined within whose context the path can be used. Only those associations will be taken into
consideration that are related via roles with the class of the predecessor object of the path.

• Indication of basic view: By means of the (local) name of the basic view we designate the
corresponding (virtual) object of the basic view in the current view, resp. in the current derived
relationship.

When referring to an attribute we mean the value of the attribute of either the context-object or the object
designated by the path. In addition all paths that end with an attribute are named attribute paths and can
be used in different syntax rules independently of factors.

• Under ordinary circumstances it is sufficient to indicate the attribute name.
• When dealing with a coordinate attribute, we indicate the number of the axis in order to designate

the corresponding component of the coordinate. The first component has index 1.
• The implicit attribute AGGREGATES is defined within aggregation views (c f. chapter 2.15 Views)

and designates the set (BAG OF) of the aggregated base-objects.
In ordered sub-structures (LIST OF) individual elements can be approached. Admissible indices are:

• FIRST: the first element.
• LAST: the last element.
• Index number: The index indicated must be smaller than or equal the maximum number

determined within the cardinality. The first element has index 1. If it is smaller than or equals the
minimum number determined within the cardinality, there is always a corresponding element in
existence; if it is greater the existence of such an element cannot be guaranteed. Subsequently the
factor can be undefined.

A factor may also be an inspection (c f. chapter 2.15 Views). If it is preceded by an object path, then the
object class thus given must either coincide with the object class of the inspection or be an extension of it.
In order to belong to the set of structure elements supplied by the inspection, they have to belong to the
object defined by the object path.

Factors can also be function calls. As their arguments we can consider:

• Expressions: The type of result of an expression must be compatible with the argument type.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 63

• If by means of the expression an indication of role is being made, then the expression designates
the set of target objects related via this role. With a formal parameter OBJECT OF or OBJECTS
OF (only if based upon the model description it is evident, that only one target object is possible)
must be required (c f. chapter 2.14 Functions).

• All objects (ALL) of the class within whose context the function call is being made or all objects of
the class indicated. With a formal parameter OBJECTS OF must be required (c f. chapter 2.14
Functions). This always means all objects corresponding to this class or its extensions.

As comparison values the following items come into questions: function calls, run time parameters (cf.
chapter 2.16 Graphic descriptions) and constants.

2.14 Functions
By means of its name, formal parameters as well as a short function description, a function is defined as
an explanation. The names of the parameters are only of documentary value. This definition is only
admissible within contracts, since otherwise an automatic evaluation of models no longer would be
guaranteed.

As formal parameters or function results we may consider:

• All those types admissible for attributes, above all also structures. Corresponding factors (rule
Factor) come into question as arguments (i.e. current parameters).

• If a structure is indicated it is primarily structure elements that are in consideration as arguments. It
is also possible to indicate object paths that lead to objects that are an extension of the structure.
Above all with ANYSTRUCTURE it is possible to indicate any kind of object path.

• If OBJECT OF is indicated, then arguments can be all these objects that are attainable via object
path and which correspond to the definition. Above all with OBJECT OF ANYCLASS it is possible
to indicate any kind of object path. In a similar way as with references to other objects (c f. chapter
2.6.3 Reference attributes) it is possible to define the admissible super class and eventual
restrictions and to specialize them in extensions.

• If OBJECTS OF is indicated, arguments may be sets of objects of a class. All objects of the set
must comply with the requirements stated with the formal argument on the basis of the model
description (in other words the requirement stated with the formal argument does not act as a
subsequent filter).

• If ENUMVAL is indicated, arguments may be attributes or constants which designate a leaf of any
kind of enumeration (c f. chapter 2.8.2 Enumerations).

• If ENUMTREEVAL is indicated, arguments may be attributes or constants which designate a node
or a leaf of any kind of enumeration.

Syntax rules:

FunctionDef = 'FUNCTION' Function-Name
 '(' Argument-Name ':' ArgumentType
 { ';' Argument-Name ':' ArgumentType } ')'
 ':' ArgumentType [Explanation] ';'.

ArgumentType = (AttrTypeDef
 | ('OBJECT' | 'OBJECTS')
 'OF' (RestrictedClassOrAssRef | ViewRef)
 | 'ENUMVAL'
 | 'ENUMTREEVAL').

The following standard functions have been defined:

FUNCTION myClass (Object: ANYSTRUCTURE): STRUCTURE;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 64

Supplies the class of the object.

FUNCTION isSubClass (potSubClass: STRUCTURE; potSuperClass: STRUCTURE): BOOLEAN;

Supplies true, if the class of the first argument of the corresponds to the class or a subclass of the second
argument.

FUNCTION isOfClass (Object: ANYSTRUCTURE; Class: STRUCTURE): BOOLEAN;

Supplies true if the object of the first argument belongs to the class or a subclass of the second argument.

FUNCTION elementCount (bag: BAG OF ANYSTRUCTURE): NUMERIC;

Supplies the number of elements contained within the bag (or the list).

FUNCTION objectCount (Objects: OBJECTS OF ANYCLASS): NUMERIC;

Supplies the number of objects appertaining to the given set of objects.

FUNCTION len (TextVal: TEXT): NUMERIC;
FUNCTION lenM (TextVal: MTEXT): NUMERIC;

Supplies the length of text in terms of its number of symbols.

FUNCTION trim (TextVal: TEXT): TEXT;
FUNCTION trimM (TextVal: MTEXT): MTEXT;

Supplies the text without blanks at beginning or end.

FUNCTION isEnumSubVal (SubVal: ENUMTREEVAL; NodeVal: ENUMTREEVAL): BOOLEAN;

Supplies true, if SubVal is a sub-element, i.e. a sub-node or a leaf of the node NodeVal.

FUNCTION inEnumRange (Enum: ENUMVAL;
 MinVal: ENUMTREEVAL;
 MaxVal: ENUMTREEVAL): BOOLEAN;

Supplies true, if the enumeration belongs to Enum, is ordered and placed within the range of MinVal to
MaxVal. Sub-elements of MinVal or MaxVal are considered to appertain as well.

FUNCTION convertUnit (from: NUMERIC): NUMERIC;

Converts the numeric value of the parameter "from" into the numeric return value and takes into
consideration the units that are linked with the parameter and with the application of the result value
(typically with the attribute the result is assigned to). This function can only be employed if the arguments
of " from" are compatible with these of the return parameter, i.e. if their units have been derived from a
common unit.

FUNCTION areAreas (Objects: OBJECTS OF ANYCLASS;
 SurfaceBag: ATTRIBUTE OF @ Objects
 RESTRICTION (BAG OF ANYSTRUCTURE);
 SurfaceAttr: ATTRIBUTE OF @ SurfaceBag
 RESTRICTION (SURFACE)): BOOLEAN;

Checks whether the surfaces form a tessellation in accordance with object set (first parameter) and
attribute (third parameter). Should the surfaces be a direct part of the object class, then UNDEFINED has
to be indicated for SurfaceBag, in all other cases the path leading to the structure attribute with the
structure containing the surface attribute has to be indicated.

2.15 Views
Views are classes and structures whose objects are not original, but virtual, since they have been derived
from objects of other views or classes, resp. structures. Amongst others, views are used to formulate the

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 65

basics for graphics and special constraints. A further application consists of transmitting data in its
derived, mostly simplified form to receiving systems.

Views are only transferred if they have been defined in a VIEW TOPIC. In this case their transmission
takes place in much the same way as the complete transfer (keyword FULL) of normal classes,
subsequently the data-receiver (c f. chapter 3 Sequential transfer) need not be concerned with how the
(virtual) objects have been created. Views can also be explicitly excluded from any transfer
(TRANSIENT), if they are only of local significance, i.e. if they only serve as base for other views. All
incremental transfer of views is explicitly excluded, since no object identification can be assigned to view-
objects.

Views can be abstract (ABSTRACT) or concrete. Concrete can also be founded on abstract bases.
Therein it is only possible to approach base attributes that are concrete. If this is not the case, the view
itself must be declared abstract.

Views can also be extended (EXTENDED or EXTENDS). However it is impossible to alter the formation
definition. Thanks to the extension it is possible to conceive extensions of views, classes and structures
that serve as foundation to the view in such a way, that further selections, attributes and constraints can
be formulated.

Syntax rules:

ViewDef = 'VIEW' View-Name
 Properties<ABSTRACT,EXTENDED,FINAL,TRANSIENT>
 [FormationDef | 'EXTENDS' ViewRef]
 { BaseExtensionDef }
 { Selection }
 '='
 [ViewAttributes]
 { ConstraintDef }
 'END' View-Name ';'.

ViewRef = [Model-Name '.' [Topic-Name '.']] View-Name.

By means of the formation definition (FormationDef) of a view we define how and on what basis the
virtual objects of a view can be formed.

The view-projection (keyword PROJECTION OF) is the simplest form of a view. It allows the viewing of
the super class (class, structure or view) in altered form (e.g. attributes only partly or in altered order).

With a join (keyword JOIN OF) we produce the Cartesian product (or cross-product) of the super classes
(class or view), i.e. there are as many objects of the join-class as there are combinations of objects of the
different super classes. It is also possible to define so-called "outer joins", in other words joins of objects
of the first super class with (virtually inexistent) void objects of further super classes (indication "(OR
NULL)"). Such void objects are added if no object of the desired other class could be found that might
correspond to a certain combination of preceding objects. All attributes of the void object are undefined.
Thus the corresponding view-attributes may not be compulsory.

The use of union (keyword UNION OF) allows merging different super classes into one single class.
Typically all attributes of the different super classes are assigned to one attribute of the union class. The
attribute type of the super class must be compatible with the attribute type of the union view (same type
or one of its extensions).

By means of an aggregation (keyword AGGREGATION OF) it is possible to combine in one instance
either all instances of a basic set or those whose required attribute combination is identical. Within the
aggregation view the implicit attribute AGGREGATES (c f. chapter 2.13 Expressions) renders available
the corresponding set of original objects in the form of BAG. This implicit attribute does not belong to the

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 66

actual attributes of the view and thus will not be transferred even if a transfer is required. For example it
can be assigned to the corresponding attribute of the aggregation view or in the form of an argument it
can be consigned to a function.

By means of inspection (keyword INSPECTION OF) we obtain the set of all structure elements (with BAG
OF or LIST OF or defined according to polyline, surface or tessellation) which belongs to a sub-structure
attribute (direct or indirect) of an object class.

Any normal inspection of a tessellation respectively the inspection of a surface attribute will supply the
boundaries of all areas resp. the surfaces of this class (structure SurfaceBoundary). Based upon the line
attributes the line strings of each boundary (structure SurfaceEdge) are formed in such a way as to
render minimal their number. Consecutive line strings, featuring the same line attributes are thus
combined into one line string. Especially if no line attributes have been defined, one single line string will
result. Should you attempt a further inspection of the attribute Lines, you would obtain all line strings
(structure SurfaceEdge). However in this manner they will appear twice in a tessellation (once for very
area object concerned).

By means of the inspection of a tessellation (keyword AREA INSPECTION OF) you will obtain exactly
once the line strings of the edges of all areas belonging to the tessellation (in the form of structure
SurfaceEdge). The two areas that are bordered by one common line string may be referred to THISAREA
resp. THATAREA (cf. chapter 2.13 Expressions). As with a normal inspection line strings (structure
SurfaceEdge) will be delivered as condensed as possible.

STRUCTURE SurfaceEdge =
 Geometry: DIRECTED POLYLINE;
 LineAttrs: ANYSTRUCTURE;
END SurfaceEdge;

STRUCTURE SurfaceBoundary =
 Lines: LIST OF SurfaceEdge;
END SurfaceBoundary;

In the structure as stated below the inspection of a line attribute (POLYLINE) will supply all the segments
(LineSegments) that form the line string objects of this class:

STRUCTURE LineGeometry =
 Segments: LIST OF LineSegment;
MANDATORY CONSTRAINT isOfClass (Segments[FIRST],INTERLIS.StartSegment);
END LineGeometry;

In other words the first curve segment represents a so-called StartSegment with length 0, and all others,
so-called LineSegments are either straight lines, arcs or curve segments of some other type, in
accordance with the definition stated in the structure.

INTERLIS only aspires to the conceptual description of a view. It is explicitly omitted to support an
efficient realization of views. Thus the generating of views is part of a special degree of conformance.

Syntax rules:

FormationDef = (Projection
 | Join
 | Union
 | Aggregation
 | Inspection) ';'.

Projection = 'PROJECTION' 'OF' RenamedViewableRef.

Join = 'JOIN' 'OF' RenamedViewableRef
 (* ',' RenamedViewableRef
 ['(' 'OR' 'NULL' ')'] *).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 67

Union = 'UNION' 'OF' RenamedViewableRef
 (* ',' RenamedViewableRef *).

Aggregation = 'AGGREGATION' 'OF' RenamedViewableRef
 ('ALL' | 'EQUAL' '(' UniqueEl ')').

Inspection = ['AREA'] 'INSPECTION' 'OF' RenamedViewableRef
 '->' StructureOrLineAttribute-Name
 { '->' StructureOrLineAttribute-Name }.

All basic views employed in a view receive a name within the view in use; they can be referred to under
this name. This name also corresponds to the basic view as long as it is not renamed by means of an
explicit (local) base-name definition. Above all renaming becomes necessary where joins are defined
which refer repeatedly to the same super class.

Syntax rules:

RenamedViewableRef = [Base-Name '~'] ViewableRef.

ViewableRef = [Model-Name '.' [Topic-Name '.']]
 (Structure-Name
 | Class-Name
 | Association-Name
 | View-Name).

If within a view, resp. the extension of a view extensions of super classes ought to be taken into account,
thus allowing the formulation of further attributes, selections or constraints, a corresponding extension
definition (BaseExtensionDef) has to be listed. It proceeds from an already defined basic view and in turn
describes its extensions (which must be extensions of former basic views) as basic views. If such a view
extension is employed within expressions the value "UNDEFINED" occurs, if the basic object belonging to
the virtual object does not match this view extension.

Syntax rule:

BaseExtensionDef = 'BASE' Base-Name 'EXTENDED' 'BY'
 RenamedViewableRef { ',' RenamedViewableRef }.

By means of constraints (keyword WHERE) it is possible to apply further restrictions to the set of view
objects defined by the formation definition.

Syntax rule:

Selection = 'WHERE' Logical-Expression ';'.

As far as attributes (and thus receiver views) and constraints are concerned, on principle views are built
in the same way as classes and structures. For the purpose of facilitating the writing-process we further
offer the possibility to transfer all attributes of a view-base in the same order (ALL OF). However this
would not make sense in unions and with AREA-inspections and consequently is inadmissible.

Syntax rule:

ViewAttributes = ['ATTRIBUTE']
 { 'ALL' 'OF' Base-Name ';'
 | AttributeDef
 | Attribute-Name
 Properties <ABSTRACT,EXTENDED,FINAL,TRANSIENT>
 ':=' Factor ';' }.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 68

In those simple cases where an attribute is transferred from the basic view, it is sufficient to indicate the
attribute name and the assignation to the basic attribute. Such definitions are always final, that means
they cannot be extended any further.

In unions it is compulsory to indicate for each attribute from which attributes of the basic class it has been
derived. However an attribute must not refer to all basic classes as long as the attribute type permits
undefined values. It is regarded as undefined for all missing basic objects.

The following example demonstrates how a view can be described which permits the definition of a
proper relationship by means of the construct DERIVED FROM (cf. chapter 2.7 Proper relationships).

DOMAIN
 CHSurface = ... ;

FUNCTION Intersect (Surface1: CHSurface;
 Surface2: CHSurface): BOOLEAN;

CLASS A =
 a1: CHSurface;
END A;

CLASS B =
 b1: CHSurface;
END B;

VIEW ABIntersection
 JOIN OF A,B;
 WHERE Intersect (A.a1,B.b1);
 =
END ABIntersection;

ASSOCIATION IntersectedAB
 DERIVED FROM ABIntersection =
 ARole –- A := ABIntersection -> A;
 BRole –- B := ABIntersection -> B;
END IntersectedAB;

2.16 Graphic descriptions
A graphic description consists of graphic definitions that are always based upon a view or a class
(keyword BASED ON). By means of a graphic definition we conceptionally attempt to assign a graphic
symbol (point, line, area symbol, text label) through one or several drawing rules (rule DrawingRule) to
each object of this view or class – unless such an object has been ruled out by a specific selection
(keyword WHERE) – that refers to the view or the class. Thus one or several graphic objects are created,
which in turn will produce the respective representation (see figure 5). To this purpose each drawing rule
must select a graphic symbol (with meta object name) and determine arguments for the corresponding
parameters.

In brackets (rule Properties) inheritance characteristics can be defined. Whenever a graphic description is
abstract, it can produce no symbol objects. The extension of a graphic must be based upon the same
class as the base graphic (BASED ON lacks) or upon one of its extensions.

The drawing rule is identified by a name which is unequivocal within the graphic description, in order to be
traced in extensions and subsequently refined. (Note: in the sense of specialization it refines also
additional parameter values). Where there are extensions to a drawing rule in existence (in extending
graphic descriptions), these will not create new graphic objects, but will only influence the symbol
parameters of the graphic object determined by the basic definition. It is admissible to define several
extensions to one graphic definition. They all are evaluated (in the order of their definition). This is
especially of use when planning several extension piles for various aspects (e.g. various drawing rules).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 69

Subsequently, the different symbol parameters are determined. This definition may be produced in
several steps. It is the value defined last that applies to each respective parameter. Firstly the primary
definition is evaluated, and only then possible extensions. Furthermore it is possible to link parameter-
assignments to a constraint (rule CondSignParamAssignment), i.e. the assignment is only in force if the
constraint is fulfilled. If the selection constraint is not complied with, eventual sub-extensions are no
longer taken into consideration. Within assignment rules (rule CondSignParamAssignment) the
namespace of the basic class or basic view is valid for all attribute names or role names, for the names of
meta objects, of functions and of run time parameters it is the namespace of the graphic definition that is
valid.

As soon as drawing rules are concrete, we must define what class the graphic symbols that are to be
assigned belong to. In extensions of drawing rules this class of graphic symbols must be replaced by a
class which is an extension of the former. Primarily the "responsible" class of graphic symbols is the class
to which the assigned graphic symbol object (a meta object) belongs. Concrete values must be assigned
to the parameters introduced in the " responsible" class. If the parameters indicated correspond to an
extended class of graphic symbols, this becomes the "responsible" class, provided it is in accordance
with the class of the graphic symbol of the drawing rule or is one of its extensions.

In the constraints mentioned above object-attributes (see AttributePath in rule SignParamAssignment)
can also be compared with run time parameters (cf. chapter 2.11 Run time parameters). Run time
parameters which are of significance for the graphics (e.g. scale of the required graphic) typically are
defined in symbology models, since they describe - much in the same way as parameter of symbols –
graphic competences that are expected of a system. For the parameter of a graphic symbol which
requires a meta object, a meta object reference has to be indicated (cf. chapter 2.10 Dealing with meta
objects).

The value of the ordinary parameter of a graphic symbol is indicated in terms of a constant or reference to
an object-attribute (c f. factor in rule SignParamAssignment). Thereby we always refer to the attribute of
an object from the basic class or basic view which has been specified by means of BASED ON.

Since the representation often depends on attributes which have been defined by means of
enumerations, a special construct is available to this purpose: the enumeration domain. An enumeration
domain is either a single knot of the enumeration-type tree or an interval between knots defined by two
knots of the same level. Interval definitions are only admissible when dealing with ordered enumeration-
types. If the attribute value lies within the indicated enumeration domain, the corresponding parameter
value is set. Concrete symbols are a result of the symbology model. Therein all symbol classes plus the
necessary run time parameters (keyword PARAMETER) for their application are defined. It is admissible
to define numeric data-types only in an abstract way.

Syntax rules:

GraphicDef = 'GRAPHIC' Graphic-Name Properties<ABSTRACT,FINAL>
 ['EXTENDS' GraphicRef]
 ['BASED' 'ON' ViewableRef] '='
 { Selection }
 { DrawingRule }
 'END' Graphic-Name ';'.

GraphicRef = [Model-Name '.' [Topic-Name '.']] Graphic-Name.

DrawingRule = DrawingRule-Name Properties<ABSTRACT,EXTENDED,FINAL>
 ['OF' Sign-ClassRef]
 ':' CondSignParamAssignment
 { ',' CondSignParamAssignment } ';'.

CondSignParamAssignment = ['WHERE' Logical-Expression]

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 70

 '(' SignParamAssignment
 { ';' SignParamAssignment } ')'.

SignParamAssignment = SignParameter-Name
 ':=' ('{' MetaObjectRef '}'
 | Factor
 | 'ACCORDING' Enum-AttributePath
 '(' EnumAssignment
 { ',' EnumAssignment } ')').

EnumAssignment = ('{' MetaObjectRef '}' | Constant)
 'WHEN' 'IN' EnumRange.

EnumRange = EnumerationConst ['..' EnumerationConst].

For the application in symbology models the class SIGN has been predefined by INTERLIS:

CLASS SIGN (ABSTRACT) EXTENDS METAOBJECT =
 PARAMETER
 Sign: METAOBJECT;
END SIGN;

For concrete symbol classes this basic class has to be extended, thereby defining on the one hand
concrete data, on the other parameters.

The following example outlines how the corresponding graphics (point symbols and text labels) are
defined from a point class with coordinates, string and an enumeration as attribute.

The symbology model is to be defined as follows:

CONTRACTED SYMBOLOGY MODEL SimpleSignsSymbology (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 DOMAIN
 S_COORD2 (ABSTRACT) = COORD NUMERIC, NUMERIC;

 TOPIC SignsTopic =

 CLASS Symbol EXTENDS INTERLIS.SIGN =
 PARAMETER
 Pos: MANDATORY S_COORD2;
 END Symbol;

 CLASS Textlabel EXTENDS INTERLIS.SIGN =
 PARAMETER
 Pos: MANDATORY S_COORD2;
 Text: MANDATORY TEXT;
 END Textlabel;

 END SignsTopic;

END SimpleSignsSymbology.

In addition to this symbology model concrete (symbol-)objects are supposed to have been listed and filed
under the symbol library name (i.e. basket name) SimpleSignsBasket. The symbol objects listed (class
symbol) are named dot-symbol, square-symbol, circle-symbol; the font-types (class text label) labeling1
and labeling2.

MODEL DataModel (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 DOMAIN
 LCoord = COORD
 0.000 .. 200.000 [m],

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 71

 0.000 .. 200.000 [m],
 ROTATION 2 -> 1;

 TOPIC DotTopic =

 DOMAIN
 DotType = (Stone
 (large,
 small),
 Bolt,
 Pipe,
 Cross,
 nonmaterialized) ORDERED;

 CLASS Dot =
 Position: LCoord; !! LCoord be a coordinate value domain
 Type: DotType;
 DotName: TEXT*12;
 END Dot;

 END DotTopic;

END DataModel.

CONTRACTED MODEL SimpleGraphic (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS DataModel;
 IMPORTS SimpleSignsSymbology;

 SIGN BASKET SimpleSignsBasket ~ SimpleSignsSymbology.SignsTopic;

 TOPIC DotGraphicsTopic =
 DEPENDS ON DataModel.DotTopic;

 GRAPHIC SimpleDotGraphic BASED ON DataModel.DotTopic.Dot =

 Symbol OF SimpleSignsSymbology.SignsTopic.Symbol: (
 Sign := {DotSymbol};
 Pos := Position
);

 END SimpleDotGraphic;

 END DotGraphicsTopic;

END SimpleGraphic.

By means of this graphic (based upon the symbology model SimpleSignsSymbology and the graphic
representation SimpleGraphic) for all dots of class dot simple dot symbols are drawn.

It is also conceivable that an improved graphic is desirable. Such an improvement can be made in
different respects, e.g.:

• Additional symbols are desired (point-symbols, cross-symbols, triangle-symbols). This requires a
supplementary symbol library by name of SimpleSignsPlusBasket. Since it is an extension of the
library SimpleSignsBasket, the symbol objects (resp. meta objects) will be searched for in both
libraries. If the library SimpleSignBasket were directly extended (EXTENDED), then for all graphics
created with GraphicPlus within the model – including those that have been inherited from the
model SimpleGraphic – the symbols would be first searched for in the extended library and only
then in the basic library SimpleSignsBasket.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 72

• Symbols should be scalable, thus permitting the creation of small and big squares with the same
point symbol. This requires an extended symbology model that contains a parameter defining the
scaling of symbols. Since symbol classes do not feature any additional attributes, it is not
compulsory that corresponding libraries are in existence.

• Depending on the type of point, various point-symbols should be drawn: stones as big or small
squares, bolts as circles and crosses and pipes with the cross symbol. The actual point symbol can
be directly derived from the point-type. The scaling factor for small squares for the representation
of small stones is obtained by means of an additional assignment. Non-materialized points remain
simple dots; hence in this case no new assignment ensues.

CONTRACTED SYMBOLOGY MODEL ScalableSignsSymbology (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS SimpleSignsSymbology;

 TOPIC ScalableSignsTopic EXTENDS SimpleSignsSymbology.SignsTopic =

 CLASS Symbol (EXTENDED) =
 PARAMETER
 ScaleFactor: 0.1 .. 10.0; !! Default 1.0
 END Symbol;

 END ScalableSignsTopic;

END ScalableSignsSymbology.

CONTRACTED MODEL GraphicPlus (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS SimpleGraphic;
 IMPORTS SimpleSignsSymbology;
 IMPORTS ScalableSignsSymbology;

 SIGN BASKET SimpleSignsPlusBasket EXTENDS
 SimpleGrafik.SimpleSignsBasket ~ ScalableSignsSymbology.ScalableSignsTopic;

 TOPIC DotGraphicsPlusTop EXTENDS SimpleGraphic.DotGraphicsTopic =

 GRAPHIC DotGraphicPlus EXTENDS SimpleDotGraphic =

 Symbol (EXTENDED) OF ScalableSignsSymbology.ScalableSignsTopic.Symbol: (
 Sign := ACCORDING Art (
 {SquareSymbol} WHEN IN #Stone,
 {CircleSymbol} WHEN IN #Bolt,
 {CrossSymbol} WHEN IN #Pipe .. #Cross
)
),
 WHERE Type == #Stone.small (
 ScaleFactor := 0.5
);

 Text OF SimpleSignsSymbology.Signs.Textlabel: (
 Sign := {Labeling1};
 Pos := Position;
 Text := DotName
);

 END DotGraphicPlus;

 END DotGraphicsPlusTop;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 73

END GraphicPlus.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 74

3 Sequential transfer

3.1 Introduction
In this chapter we describe the sequential INTERLIS-transfer service. It permits the system-neutral
exchange of data stores between different systems. Our INTERLIS-transfer service supports the
complete as well as the incremental (resp. differential) exchange of data stores (replication). This transfer
service is applicable to every INTERLIS-model. Thus it is possible to t ransfer data (data model) and
symbol objects (symbology models) by means of the same mechanism.

At present the INTERLIS-transfer service is defined as an exchange of XML-files (www.w3.org/XML/). For
more extensive utilization of these INTERLIS/XML-files it is, amongst others, also possible to create XML-
schema-documents (www.w3.org/XML/Schema). Nevertheless it is conceivable that further INTERLIS-
transfer services will be defined in the future (e.g. based upon web-services or COBRA). For this reason
the description of our INTERLIS-transfer service has been subdivided into the paragraphs General Rules
and XML-Coding. General rules apply to every sequential INTERLIS-transfer service, independently of
the concrete coding or transmission. Rules stated under XML-Coding apply especially to XML-formatted
transfer files.

3.2 General rules for the sequential transfer

3.2.1 Derivation from the data model
Each INTERLIS-transfer can be derived from the corresponding data model by applying rules (model-
based data transfer).

3.2.2 Reading of extended models
An INTERLIS-transfer is always structured in such a way as to allow a reading program intended and
configurated for a specific data model, to also read data of extensions of this data model without any
knowledge of the extended model definitions.

3.2.3 Organization of a transfer: Preliminaries
An INTERLIS-transfer is a sequential object-current. The object-current is subdivided into preliminaries
and data domain.

• Indication of the current INTERLIS-version number (cf. chapter 2.3 Principal rule).
• Reference to the corresponding data model(s).

• Indication of the sender (SENDER).
Within the preliminaries there is an option to give information concerning the author of the object
identification structure.

The preliminaries may contain comments (optional).

The organization of the data domain will be described more accurately in the following paragraphs.

3.2.4 Transferable objects
Within the data-domain objects (i.e. object instances) of concrete classes, relationships, views and
graphic definitions can be transferred. Within the transfer, objects of views are treated in the same way as
objects of concrete classes. At present the incremental transfer of views is not yet possible. Objects of

http://(www.w3.org/XML/)
http://www.w3.org/XML/Schema)
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 75

views are only transferred provided the pertinent views have been declared within a VIEW TOPIC,
otherwise they will not be transmitted. Furthermore views will not be transferred if they have been marked
TRANSIENT.

3.2.5 Order of objects within the data domain
A data domain consists of a series of baskets (topic instances). Baskets can only be transferred as a
whole. With incremental t ransfers only altered, resp. deleted objects will be t ransferred. However even
with incremental transfers conceptionally it is the entire basket that is transferred along with the
prehistory. On principle it is possible that a transfer contains basket provided by different models. In turn
each basket contains all its objects. Within the transfer any order of objects is permitted, above all the
objects need not in any case be ordered according to relationship or grouped in classes within a basket
(as opposed to INTERLIS 1). Void baskets need not be transferred.

3.2.6 Coding of objects
Within the object current each basket and each object receives an identification. The basket identification
must be a general and stable object-identifier (OID). The identifier of baskets and objects must be
unequivocal along the entire transfer. Furthermore with every object a basket-identification is supplied
within which the object has originally been created (original basket). With incremental transfers, resp. with
initial transfers the identification of both basket and object must be a general and stable object-identifier
(cf. appendix D Organization of object identifiers (OID)).

All object attributes (including COORD, SURFACE, AREA, POLYLINE, STRUCTURE, BAG OF, LIST OF;
etc.) are memorized directly with the object. Attributes of the type AREA are coded as attributes of the
type SURFACE. Attributes of the type BAG are coded as attributes of the type LIST. STRUCTURE is
coded as LIST {1}.

For the transmission of attribute values only the printable symbols of the US-ASCII character set (32 to
126) and the symbols according to the symbol table in appendix B are available.

3.2.7 Transfer-types
Along with each basket the following information must be supplied:

• Details concerning the type (KIND) of transfer: FULL, INITIAL or UPDATE.
• Details concerning the STARTSTATE resp. ENDSTATE of the transfer (only with the types INITIAL

(ENDSTATE) or UPDATE (STARTSTATE and ENDSTATE)).
• Details concerning the consistency of its contents: COMPLETE, INCOMPLETE, INCONSISTENT,

ADAPTED.
It is admissible to have baskets with different types of transfer (Full, INITIAL and/or UPDATE) within the
same transfer. The various types of transfer have the following significance:

• FULL – complete transfer. Upon receipt of a FULL-basket the receiver must first initialize a new
basket and then insert all objects into the basket by means of INSERT. FULL is inappropriate as
base for transfers since the object identifications are only valid for this transfer. Transfer-files in
accordance with INTERLIS 1 correspond to FULL. Within the transfer-type FULL only the operation
INSERT may occur.

• INITIAL – Primary transfer. Corresponds to the transfer type FULL with the sole difference that both
basket and objects contained must feature general and stable OID's. Likewise within the transfer-
type FULL only the operation INSERT may occur.

• UPDATE – Additional transfer. An UPDATE-basket contains objects with INSERT, UPDATE or
DELETE operations. All objects and the basket feature general and stable OID's. UPDATE baskets

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 76

may only be processed by the target system, if the start-state of the basket has already been
received with INITIAL or UPDATE.

In addition the following transfer-rules apply to the transfer-type UPDATE:

• The receiving system may proceed on the assumption that after complete processing of all data of
one UPDATE-basket a consistent has been re-established, i.e. an UPDATE-basket transfers a
basket from a consistent start-state to a consistent end-state.

• An UPDATE-basket itself is not consistent, since in most cases references can only be resolved
together with former transfers.

Furthermore to each object a corresponding transfer operation must be indicated (c f. chapter 1.4.5
Baskets, replication and data t ransfer). The operations INSERT, UPDATE and DELETE have the
following significance:

• The operation INSERT signifies "insert a new object" (insert object).
• The operation UPDATE signifies "update object attribute values" (update object). All attributes (not

only these that have been altered) must be transferred.
• The operation DELETE signifies "delete objects" (delete object). All attributes (not only those of

OID's) should be transferred.
In many cases it is not an entire set of data that has to be transferred but only part of it. Depending on
your choice of section, some geometries (polylines and surfaces) may be incomplete. In order to allow
this without having to create an additional model, it must be possible that objects (and consequently the
corresponding basket) can be signalized INCOMPLETE. In a similar way with the integration of several
baskets into one, situations may arise where data consistency was either violated or only guaranteed by
altering data beyond a tolerable degree. In both cases the objects in question (and consequently the
entire basket) should be signalized as INCONSISTENT or ADAPTED.

3.3 XML-coding

3.3.1 Introduction
As opposed to the rules in chapter 3.2 General rules for the sequential transfer, the rules under XML-
coding apply only to transfer files formatted according to XML-0.1 standard (see www.w3.org./XML). For
formalizing the derivation rules of t ransfer formats we use the EBNF-notation already introduced in
chapter 2.1 Syntax applied. Hereby the following rules are already predefined:

XML-Any = any XML-elements of your chosing (well-formed XML).
XML-base64Binary = any binary data coded in Base64.
XML-String = any text without tags (including carriage return (#xD),
 line feed (#xA) and tabulator (#x9)).
XML-NormalizedString = any text limited to one line.
XML-ValueDelimiter = '"' | #x27 (simple hyphen ').
XML-Value = XML-ValueDelimiter XML-NormalizedString XML-ValueDelimiter.
XML-NcName = (Letter | '_') { Letter | Digit | '_' | '-' | '.' }.
XML-ID = XML-ValueDelimiter [XML-NcName ':'] (Letter | Digit | '_')
 { Letter | Digit | '_' | '-' | '.' } XML-ValueDelimiter.

If the ID-value is a general, stable OID, then the name of the OID-domain (c f. chapter 3.3.4.1 Information
concerning the structure of object identifications) must be indicated as a prefixe (in front of the ':'), unless
you are dealing with a pure, unstable transfer identification.

In order to enhance readability of each individual derivation rule we suggest additional use of the macros
TAG and ETAG.

TAG (Tagwert)

http://www.w3.org./XML
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 77

Generates an EBNF-partial rule of the form:

'<%Tagwert%>'

TAG (Tagwert, Attribut1, Attribut2, ...)

Generates an EBNF-partial rule of the form:

'<%Tagwert%' %Attribut1% %Attribut2% etc. '>'

ETAG (Tagwert)

Generates an EBNF-partial rule of the form:

'</%Tagwert%>'

In each case the sequence %argument% has to be replaced by the current content of the argument.

Examples:

TAG (DATASECTION) produces '<DATASECTION>'
TAG (HEADERSECTION,'VERSION="2.3"') produces '<HEADERSECTION' 'VERSION="2.3"' '>'
ETAG (DATASECTION) produces '</DATASECTION>

3.3.2 Symbol coding
The only available symbols for the coding of XML-String, resp. XML-NormalizedString are ASCII signs 32
to 126, resp. symbols stated in appendix B Symbol table. These symbols are coded in accordance with
the coding rule UTF-8 or as XML Character Reference, resp. XML Entity reference. In addition the XML
special symbols '&', '<' and '> ' must be coded as follows:

• '&' must be replaced by the sequence '&'
• '<' must be replaced by the sequence '<'
• '>' must be replaced by the sequence '>'

A complete summary of this symbol coding with all possible forms of coding per symbol is to be found in
appendix B Symbol table. If several coding forms per symbol are available it is up to an INTERLIS 2
writing program to select a pertinent form. An INTERLIS 2 reading program must be able to recognize all
coding forms. Note: Various coding forms per symbol are admitted in order to achieve maximum
compatibility with existing XML-tools.

3.3.3 General structure of a transfer file
An INTERLIS-transfer file is structured in accordance with the following EBNF-main rule:

Transfer = '<?xml version="1.0" encoding="UTF-8" ?>'
 TAG (TRANSFER, 'xmlns="http://www.interlis.ch/INTERLIS2.3"')
 HeaderSection
 DataSection
 ETAG (TRANSFER).

The rule HeaderSection generates the header section of the transfer file and the rule DataSection
generates the data section.

At any time an INTERLIS-transfer file generated by the transfer rule is also a well formed XML 1.0-
transfer file. Thus in an INTERLIS-transfer file any number of comment lines in the form of

<!-- Comment -->

may occur at places assigned by XML 1.0. However the contents of these comment lines may not be
interpreted by the transfer software. UTF-8-coding is applied for the coding of all symbols of the transfer

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 78

file. As a standard however it is only the set of symbols displayed in appendix B Symbol table that can be
used.

Data are t ransferred as XML-objects. The tag names of XML-objects are derived from their respective
object names in the INTERLIS-data model. For t ranslated data models (TRANSLATION OF) this implies
that tag names exist in the translated language within the t ransfer (however additional entries must be
made in the alias-table).

3.3.4 Header section
A header section is structured as follows:

HeaderSection = TAG (HEADERSECTION,
 'VERSION="2.3"',
 'SENDER=' XML-Value)
 Models
 [Alias]
 [OidSpaces]
 [Comment]
 ETAG (HEADERSECTION).

Models = TAG (MODELS)
 (* Model *)
 ETAG (MODELS).

Model = TAG (MODEL,
 'NAME=' XML-Value,
 'VERSION=' XML-Value,
 'URI=' XML-Value)
 ETAG (MODEL).

Alias = TAG (ALIAS)
 { Entries }
 ETAG (ALIAS).

Entries = TAG (ENTRIES,
 'FOR=' XML-Value)
 { Tagentry | Valentry | Delentry }
 ETAG (ENTRIES).

Tagentry = TAG (TAGENTRY,
 'FROM=' XML-Value, 'TO=' XML-Value)
 ETAG (TAGENTRY).

Valentry = TAG (VALENTRY,
 'TAG=' XML-Value,
 'ATTR=' XML-Value,
 'FROM=' XML-Value, 'TO=' XML-Value)
 ETAG (VALENTRY).

Delentry = TAG (DELENTRY,
 'TAG=' XML-Value
 [, 'ATTR=' XML-Value])
 ETAG (DELENTRY).

OidSpaces = TAG (OIDSPACES)
 (* OidSpace *)
 ETAG (OIDSPACES).

OidSpace = TAG (OIDSPACE,
 'NAME=' XML-Value,

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 79

 'OIDDOMAIN=' XML-Value)
 ETAG (OIDSPACE).

Comment = TAG (COMMENT)
 XML-String
 ETAG (COMMENT).

In the HeaderSection-element the following values (XML-attributes) must be entered:

• VERSION. Version of the INTERLIS-coding (currently 2.3)
• SENDER. Sender of the data set.

In the element Models all data models must be listed, if data related to their topics occur. Under NAME
transfer the name of the data model, under VERSION its version.

In the element OidSpaces information concerning the structure of object identifications are stated (cf.
chapter 3.3.4.1 Information concerning the structure of object identifications).

In the element Alias all entries are made which allow polymorph reading of a data set (c f. chapter 3.3.4.2
Significance and contents of the Alias-table). The Alias -element is optional. However should it be missing,
polymorph reading is only possible if the Alias-element can be supplied in a different manner thanks to its
schema identifier.

In Comment a comment can be added which further describes the transfer (optional).

3.3.4.1 Information concerning the structure of object identifications
If a transfer unit contains general, stable object identifications, then the Oid-domains applied must be
stated in the preliminaries with their qualified names and equipped with an abbreviation. When there is no
definition of an Oid-domain within the preliminaries, then the transfer file contains no general, stable
object identifications.

3.3.4.2 Significance and contents of the Alias-table
The element Alias in the HeaderSection is a special table which enables a reading program to read
extended models without any knowledge of the extensions (so-called polymorph reading). Since XML
does not know inheritance and consequently no polymorphism, the alias table is used to transmit
necessary additional information to a reading program.

Alias must contain one representation table (entries-element) per data model X which occurs within the
transfer. Via xxxENTRY-entries (TAGENTRY, VALENTRY, DELENTRY) it is indicated in each
relationship table which transferable objects (i.e. inherent, resp. extensions thereof) may occur in the
baskets of data model X (resp. may not occur in the case of DELENTRY-entries). If there should exist
translations (TRANSLATION OF) of the data model X within the transfer, then also all tags of the
translated data model must be entered with either TAGENTRY or VALENTRY in the representation table
of data model X. Representation tables of each individual data model must be arranged in such a way
that representation tables of base models are entered before the representation tables of extended, resp.
translated models. The individual entries of the Alias-table have the following significance:

• TAGENTRY. The tag is entered according to the original model in the FROM-attribute (e.g.
'Canton.TCanton.K1'), in the TO-attribute it is the tag according to the model currently viewed (e.g.
'Federation.TFederation.B1'). Also all tags must be entered according to current model. In this case
the same value is entered in the FROM- resp. TO-tag. The TAGENTRY must be indicated for
concrete topics, classes, structures, relationships and graphic definitions, resp. transferable views.

• VALENTRY. Only the attribute name is indicated within the ATTR-attribute (i.e. 'Colour'). Both
model and class that feature this attribute are listed as qualified names within the attribute TAG.
The value according to the original model is entered in the FROM-attribute (e.g. 'red.crimson'), in

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 80

the TO-attribute it is the tag according to the current model (e.g. 'red'). All values must be entered
according to the current model. In this case the same value is indicated for the FROM- resp. TO-
tag. The VALENTRY must be indicated for all enumeration types.

• DELENTRY. In the TAG-attribute we indicate the tag which cannot occur from the view-point of the
current model, but which could exist in extensions. The DELENTRY must be indicated for concrete
topics, classes, structures, relationships and graphic definitions, resp. transferable views as well as
for attributes of classes, structures and transferable views. If an entire class (resp. structure,
relationship or transferable view) can not exist from the view-point of the current model, it is
admissible to only designate the non-existent class with DELENTRY. In this case the attributes of
the class (resp. structure, relationship or transferable view) must not be transferred with
DELENTRY.

• Note concerning relationships without proper identity: The rules above also apply analogously to
relationships without proper identity. Hence e.g. the values of an enumeration attribute must be
listed in the same class in which the role is listed (i.e. under class.role.attribute).

• In the following example the characteristics of the Alias-table are once more illustrated, resp.
commented.

The following data description:

MODEL Federation AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 CLASS B (ABSTRACT) =
 END B;

 TOPIC TFederation =

 CLASS B1 EXTENDS B =
 Color : (red, green, blue);
 END B1;

 END TFederation;

END Federation.

MODEL TFederation AT "http://www.interlis.ch/"
 VERSION "2005-06-16" TRANSLATION OF Federation ["2005-06-16"] =

 CLASS TB (ABSTRACT) =
 END TB;

 TOPIC TTFederation =

 CLASS TB1 EXTENDS TB =
 TColor : (tred, tgreen, tblue);
 END TB1;

 END TTFederation;

END TFederation.

MODEL Canton AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS Federation;

 TOPIC TCanton EXTENDS Federation.TFederation =

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 81

 CLASS K (ABSTRACT) EXTENDS Federation.B =
 END K;

 CLASS K1 EXTENDS Federation.TFederation.B1 =
 Color (EXTENDED): (red (dark, crimson, light));
 Txt: TEXT*40;
 END K1;

 CLASS K2 =
 Txt: TEXT*40;
 END K2;

 END TCanton;

END Canton.

MODEL County AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS Canton;

 TOPIC TCounty EXTENDS Canton.TCanton =
 END TCounty;

END County.

leads to the following Alias-table:
<ALIAS>

 <ENTRIES FOR="Federation">

 <!—Entries according to personal model -->
 <TAGENTRY FROM="Federation.TFederation" TO="Federation.TFederation"></TAGENTRY>
 <TAGENTRY FROM="Federation.TFederation.B1"
 TO="Federation.TFederation.B1"></TAGENTRY>
 <VALENTRY ATTR="Federation.TFederation.B1.Color"
 FROM="red" TO="red"></VALENTRY>
 <VALENTRY ATTR="Federation.TFederation.B1.Color"
 FROM="green" TO="green"></VALENTRY>
 <VALENTRY ATTR="Federation.TFederation.B1.Color"
 FROM="blue" TO="blue"></VALENTRY>

 <!-- Entries for TFederation (TRANSLATION OF) -->
 <TAGENTRY FROM="TFederation.TTFederation"
 TO="Federation.TFederation"></TAGENTRY>
 <TAGENTRY FROM="TFederation.TTFederation.TB1"
 TO="Federation.TFederation.B1"></TAGENTRY>
 <VALENTRY ATTR="TFederation.TTFederation.TB1.TColor"
 FROM="tred" TO="red"></VALENTRY>
 <VALENTRY ATTR="TFederation.TTFederation.TB1.TColor"
 FROM="tgreen" TO="green"></VALENTRY>
 <VALENTRY ATTR="TFederation.TTFederation.TB1.TColor"
 FROM="tblue" TO="blue"></VALENTRY>

 <!—Entries according to model Canton -->
 <TAGENTRY FROM="Canton.TCanton" TO="Federation.TFederation"> </TAGENTRY>
 <TAGENTRY FROM="Canton.TCanton.K1" TO="Federation.TFederation.B1"> </TAGENTRY>
 <DELENTRY TAG="Canton.TCanton.K1.Txt"> </DELENTRY>
 <DELENTRY TAG="Canton.TCanton.K2"> </DELENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color" FROM="red.dark" TO="red"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color" FROM="red.crimson" TO="red"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color" FROM="red.light" TO="red"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color" FROM="green" TO="green"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color" FROM="blue" TO="blue"> </VALENTRY>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 82

 <!-- Entries according to model County -->
 <TAGENTRY FROM="County.TCounty" TO="Federation.TFederation"> </TAGENTRY>

</ENTRIES>

 <ENTRIES FOR="Canton">

 <!—Entries according to personal model -->
 <TAGENTRY FROM="Canton.TCanton" TO="Canton.TCanton"> </TAGENTRY>
 <TAGENTRY FROM="Canton.TCanton.K1" TO="Canton.TCanton.K1"> </TAGENTRY>
 <TAGENTRY FROM="Canton.TCanton.K2" TO="Canton.TCanton.K2"> </TAGENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color"
 FROM="red.dark" TO="red.dark"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color"
 FROM="red.crimson" TO="red.crimson"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color"
 FROM="red.light" TO="red.light"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color"
 FROM="green" TO="green"> </VALENTRY>
 <VALENTRY ATTR="Canton.TCanton.K1.Color"
 FROM="blue" TO="blue"> </VALENTRY>

 <!-- Entries according to model County -->
 <TAGENTRY FROM="County.TCounty" TO="Canton.TCanton"> </TAGENTRY>

 </ENTRIES>

 <ENTRIES FOR="County">

 <!-- Entries according to personal model -->
 <TAGENTRY FROM="County.TCounty" TO="County.TCounty"> </TAGENTRY>

 </ENTRIES>

</ALIAS>

Thus a reading program, written resp. configurated for the Federate model, can now read data provided
by Federation, TFederation, Canton or County as follows:

• All tags provided by Federation are mapped onto itself (e.g. Federation.TFederation to
Federation.TFederation).

• All tags of TFederation (TRANSLATION OF) are mapped to their counter-part in Federation (e.g.
T.Federation.TTFederation to Federation.TFederation).

• Via its Tagentry an XML-object <Canton.TCanton.K1> is mapped to <Federation.TFederation.B1>.
The object <Federation.TFederation.B1> is known to the reading program for the Federate model,
thus it can interpret the the object accordingly.

• By means of a Tagentry an XML-Object <County.TCounty.K1> is transferred to and represented in
<Federation.TFederation.B1>. The object <Federation.TFederation.B1> is known to the reading
program for the federal model, thus the object can be interpreted correspondingly.

• The value "red.crimson" of the enumeration-attribute Canton.TCanton.K1.Color resp.
County.TCounty.Color is mapped via its Valentry to "red". The value "red" is a valid value
according to the Federate model.

• The abstract class Canton.TCanton.K, resp. County.TCounty.K need not be entered as a tagentry,
since in its data set no instances of Canton.TCanton.K, resp. County.TCounty.K may occur.

• The attribute <Canton.TCanton.K1.Txt>, resp. <County.TCounty.K1.Txt> must be ignored, since
this attribute does not exist within the Federate model.

• The class <Canton.TCanton.K2>, resp. <County.TCounty.K2> must be ignored, since from the
view-point of the Federal model instances of <Canton.TCanton.K2>, resp. <County.TCounty.K2>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 83

do not exist. Note: The attribute <Canton.TCanton.K2.Txt>, resp. <County.TCounty.K2.Txt> need
not be entered specifically with Delentry, since from the view-point of the Federate model this entire
class does not exist.

Notes:

• The alias table can be generated with the INTERLIS 2-compiler.
• For each data model contained in the data set (including all base models) an entry-element must

be entered. The name of the model must be entered in the XML-attribute FOR.
• Tag names, which after their mapping via the Alias-table do not lead to any known tag name as far

as the reading model is concerned, must be declared as errors by the reading program.
• Attribute values, which after their mapping via the Alias-table do not lead to any known value as far

as the reading model is concerned, must be declared as errors by the reading program.

3.3.5 Data section
The data section is structured as follows:

DataSection = TAG (DATASECTION)
 { Basket }
 ETAG (DATASECTION).

3.3.6 Coding of topics
Baskets are instances of a concrete TOPIC, resp. VIEW TOPIC. Baskets are coded as follows:

Basket = TAG (%Model.Topic%,
 'BID=' XML-ID
 [, 'TOPICS=' XML-Value]
 [, 'KIND=' XML-Value]
 [, 'STARTSTATE=' XML-Value]
 [, 'ENDSTATE=' XML-Value]
 [, 'CONSISTENCY=' XML-Value])
 { Object | Link | DeleteObject | SetOrderPos }
 ETAG (%Model.Topic%).

The value %Model.Topic% has to be substituted correspondingly for each concrete topic (e.g. basic data
of Cadastral Surveying.control points) XML-attributes of the basket have the following significance:

• BID. In BID the basket identification must be entered. With incremental update the basket
identification must be an OID.

• TOPICS. In TOPICS all topics, except basic topics, actually existing within the basket are indicated
in a list, separated by commas (e.g. "Canton1.Topic1, Canton2.Topic2"). The topics indicated must
be extensions of the common basic topic %Model.Topic% (possibly inherited via several levels).
The model containing the definition of the basic topic, as well as all the models containing the
definitions of extended topics, have to be stated in the model list within the preliminaries of the data
transfer.

• KIND. Transfer-type (possible values: FULL, UPDATE, INITIAL. Where the attribute is omitted,
FULL is presumed.

• STARTSTATE. Initial state of the basket before the transfer (only in connection with incremental
update).

• ENDSTATE. Final state of the basket after the transfer (only in connection with incremental
update).

• CONSISTENCY. Consistency of the basket (possible values are: COMPLETE, INCOMPLETE,
INCONSISTENT, ADAPTED). Should the attribute be missing, COMPLETE will be assumed.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 84

3.3.7 Coding of classes
Object instances of a concrete class are coded as follows:

Object = TAG (%Model.Topic.Class%,
 'TID=' XML-ID
 [, 'BID=' XML-ID]
 [, 'OPERATION=' XML-Value]
 [, 'CONSISTENCY=' XML-Value])
 { Attribute | EmbeddedLink }
 ETAG (%Model.Topic.Class%).

Link = TAG (%Model.Topic.Association%
 [, 'TID=' XML-ID]
 [, 'BID=' XML-ID]
 [, 'OPERATION=' XML-Value]
 [, 'CONSISTENCY=' XML-Value])
 { Attribute | Role | EmbeddedLink }
 ETAG (%Model.Topic.Association%).

DeleteObject = TAG (DELETE [, 'TID=' XML-ID])
 { TAG (%RoleName%,
 'REF=' XML-ID [, 'BID=' XML-ID])
 ETAG (%RoleName%) }
 ETAG (DELETE).

The value %Model.Topic.Class% must be substituted correspondingly for each concrete class (e.g.
BaseDataSet.ControlPoints.LFP). In addition to the attributes defined within the model each class – and
thus each object instance – is assigned implicitly a transfer identification (XML-attribute TID). Instances of
relationships (link) will only have a transfer identification, if it has been required explicit ly by introducing
the property OID within the scope of the definition (cf. chapter 2.7.1 Description of relationships). In
connection with the transfer-type 'FULL' all TID's incl. all BID's must be unequivocal along the entire
transfer. In connection with the t ransfer-type INITIAL or UPDATE all TID's and BID's must be OID's. In
BID the basket-identification refers to the basket in which the object originally had been created (original
basket). If the object should be located within its original basket, them BID can be omitted. Furthermore in
connection with the transfer-types INITIAL and UPDATE each object is assigned an attribute for the
update-operation (XML-attribute OPERATION). The XML-attribute OPERATION can adopt the values
INSERT, UPDATE or DELETE. Whenever OPERATION is not indicated, the value INSERT will be
presumed. The XML-attribute CONSISTENCY may take on either of the values COMPLETE,
INCOMPLETE, INCONSISTENT or ADAPTED. Should the attribute be missing, COMPLETE will be
assumed.

With incremental updates it is possible to demand the deleting of a certain object of the basket via its OID
by means of DeleteObject. In the case of relationships without OID the instance (link) is identified by
means of the combination of all OIDs of the objects referred to. As opposed to OPERATION="DELETE"
no further attributes of the object must be supplied with DeleteObject.

The following applies for the order of attributes, roles, EmbeddedLink, reference attributes within the
class: First all roles of the basic class are coded, followed by the attributes/reference attributes of the
basic class, then all EmbeddedLink of the basic class, all attributes/reference attributes of the extension,
all EmbeddedLink of the extension, etc.. Within the same extension level attributes/reference attributes
and roles are coded according to the definition order within the model file. Within the same extension
level EmbeddedLink are sorted in alphabetical order.

Parameters are not transferred with the sole exception described in chapter 3.3.10 Coding of graphic
definitions.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 85

3.3.8 Coding of views
For the coding of views cf. chapter 3.2.4 Transferable objects. The XML-attributes TID and BID are
transmitted, however not OPERATION. In terms of attributes of the view-object only those attributes are
transmitted which have been indicated within the view explicitly under ATTRIBUTES, resp. implicitly with
ALL OF.

3.3.9 Coding of relationships
There are two different manners for the coding of relationships: embedded or link. An embedded
relationship is coded in terms of a sub-element of a class involved in the association. The instance of a
link is coded in the same way as the instance of a class.

Relationships are always embedded, unless

• they have more than two roles or
• maximum cardinality is greater than 1 for both (basic) roles or

• an OID is required for the relationship or
• in the case of certain topic-spanning relationships (see below).

If maximum cardinality is greater than 1 in one of the two (basic) roles, the embedding takes place with
the target-class of this role. If this target-class has been defined within a different topic than the (basic)
association, then no embedding can take place.

If with both (basic) roles maximum cardinality is smaller or equal 1, the embedding takes place with the
target class of the second role. If this target class has been defined in a different topic than the (basic)
association and the target class of the first role has been defined in the same topic as the (basic)
association, embedding will take place with the target class of the first role (in other words: if the target
classes of both roles have been defined in a different topic than the (basic) association, no embedding
can take place).

3.3.9.1 Embedded relationships
Embedded relationships are transferred in the same way as structure attributes of the class where the
relationship is embedded.

The sub-structure is constructed as follows:

EmbeddedLink = TAG (%RoleName%,
 'REF=' XML-ID [, 'BID=' XML-ID]
 [, 'ORDER_POS=' PosNumber])
 [EmbeddedLinkStruct]
 ETAG (%RoleName%).

EmbeddedLinkStruct = TAG (%Model.Topic.Association%)
 (* Attribute *)
 ETAG (%Model.Topic.Association%).

For %RoleName% you have to indicate the name of the role which refers to the opposite object (the other
role will not be coded). In EmbeddedLink possible attributes of the relationship are coded. The XML-
attributes REF, ORDER_POS and BID have the same significance as with non-embedded relationships.

3.3.9.2 Non-embedded relationships
Non-embedded relationships are transferred in the same way as object instances of classes.

Note: For relationships without explicit names the (class) name is a result of combining the individual role
names (i.e. e.g. %RoleName1RoleName2%).

Role = TAG (%RoleName%,
 'REF=' XML-ID [, 'BID=' XML-ID]

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 86

 [, 'ORDER_POS=' PosNumber])
 ETAG (%RoleName%).

SetOrderPos = TAG (SETORDERPOS [, 'TID=' XML-ID])
 { TAG (%RoleName%,
 'REF=' XML-ID [, 'BID=' XML-ID]
 [, 'ORDER_POS=' PosNumber])
 ETAG (%RoleName%) }
 ETAG (SETORDERPOS).

If the reference points to an object within the same basket the reference is coded with REF. It is the
transfer identification of the object that has been referred to that is stated in REF.

If the reference points to an object in a different basket (within the same transfer or even elsewhere), the
reference will be further coded with BID, thereby entering the basket identification of the object which has
been referenced in BID.

In ordered relationships the attribute ORDER_POS (value > 0!) defines the absolute position of this
reference in the ordered list of references that are part of this transfer basket.

With incremental transfers it is possible to transfer the absolute position of a non-modified reference
object by means of SetOrderPos. Even with incremental transfer ORDER_POS defines the order only
within the transfer, hence it is not stable.

3.3.10 Coding of graphic definitions
In the transfer the symbol classes referred to by the graphic definition (Sign-ClassRef) are transmitted for
each graphic definition. The object instances of the symbol classes are created by executing graphic
definitions on a concrete input data-set. Parameters are coded in the same way as attributes.

3.3.11 Coding of attributes

3.3.11.1 General rules for the coding of attributes
Each attribute of an object instance (including complex attributes such as POINT, POLYLINE, SURFACE,
AREA, STRUCTURE, LIST OF; BAG OF, etc.) is coded as follows:

Attribute = [TAG (%AttributeName%)
 AttributeValue
 ETAG (%AttributeName%)
 | OIDAttributeValue].

AttributeValue = (MTextValue | TextValue | EnumValue
 | NumericValue | FormattedValue
 | BlackboxValue
 | ClassTypeValue | AttributePathTypeValue | StructureValue
 | BagValue | ListValue
 | CoordValue | PolylineValue | SurfaceValue).

With undefined attribute values the attribute is not transferred. The measuring unit of the attribute value is
not coded. Example of a simple attribute:

<Number>12345</Number>

3.3.11.2 Coding of strings
Attributes of the base type TEXT resp. MTEXT (and consequently also NAME and URI) are coded as
follows:

MTextValue = XML-String.
TextValue = XML-NormalizedString.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 87

3.3.11.3 Coding of enumerations
Enumerations are coded as follows:

EnumValue = (EnumElement-Name { '.' EnumElement-Name }) | 'OTHERS'.

For the coding of enumerations (without taking into consideration whether the domain comprises only its
leaves or the nodes as well) the syntax of enumeration constants is applied (rule EnumValue). The sign #
is omitted. The pre-defined text orientation-types HALIGNMENT and VALIGNMENT are coded in the
same way as enumerations. Equally the type BOOLEAN is transmitted like an enumeration.

3.3.11.4 Coding of numeric data types
Numeric values are coded as follows:

NumericValue = NumericConst.

Note: With whole numbers no noughts placed in front are admissible (007 is transferred as 7). With real
numbers a maximum of one leading nought is permitted (e.g. not 00.07 but 0.07). Float numbers can be
transferred in different representations (with or without mantissa). They can also be transferred with a
higher degree of precision than required by the domain. However it is essential that the value of the float
number do not violate the required domain. Thus it is possible that for instance the number 100 (for an
assumed domain of 0..999) be transferred as 100, 100.0000001, 10.0e1 or 1.0e2.

3.3.11.5 Coding of formatted domains
Formatted domains are coded according to the format definition:

FormattedValue = XML-NormalizedString.

3.3.11.6 Coding of blackboxes
Attribute values of the BLACKBOX type are coded as follows:

BlackboxValue = TAG (XMLBLBOX)
 XML-Any
 ETAG (XMLBLBOX)
 | TAG (BINBLBOX)
 XML-base64Binary
 ETAG (BINBLBOX).

The XML-variety of the BLACKBOX type is coded as XML-Any, the binary variety as XML-base64Binary.

3.3.11.7 Coding of class types
Attribute values of the type CLASS or STRUCTURE are coded as follows:

ClassTypeValue = XML-NormalizedString.

The XML-NormalizedString contains the fully qualified class, structure or relationship name (e.g.
DM01AVCH24D.ControlPointsCategory1.LFP1).

3.3.11.8 Coding of attribute path types
Attribute values of the ATTRIBUTE type are coded as follows:

AttributePathTypeValue = XML-NormalizedString.

The XML-NormalizedString contains the fully quali fied class name, followed by the attribute name
separated by a dot (e.g. BaseDataSet.ControlPoints.LFP.Number).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 88

3.3.11.9 Coding of structure attributes
Structure elements of the type STRUCTURE are coded as follows:

StructureValue = TAG (%StructureName%)
 { Attribute | ReferenceAttribute }
 ETAG (%StructureName%).

StructureName is formed either as Model.StructureName at the level Model or as
Model.Topic.StructureName at the level Topic.

3.3.11.10 Coding of ordered and not-ordered substructures
Attribute values of the type BAG OF and LIST OF are coded as follows:

BagValue = (* StructureValue *).
ListValue = (* StructureValue *).

The sequence of the ListValue-Elements may not be altered during transfer.

3.3.11.11 Coding of coordinates
Attribute values of the type COORD are coded as follows:

CoordValue = TAG (COORD)
 TAG (C1)
 NumericConst
 ETAG (C1)
 [TAG (C2)
 NumericConst
 ETAG (C2)
 [TAG (C3)
 NumericConst
 ETAG (C3)]]
 ETAG (COORD).

The individual XML-sub-objects must be filled as follows:

• C1. First component of the coordinate (coded as numeric value).
• C2. Second component of the coordinate (only with 2D- and 3D- coordinates, coded as numeric

value).
• C3. Third component of the coordinate (only with 3D-coordinates, coded as numeric value).

3.3.11.12 Coding of line strings
Attribute values of the type POLYLINE are coded as follows:

PolylineValue = TAG (POLYLINE)
 [LineAttr]
 SegmentSequence | (* ClippedSegment *)
 ETAG (POLYLINE).

StartSegment = CoordValue.

StraightSegment = CoordValue.

ArcSegment = TAG (ARC)
 TAG (C1)
 NumericConst
 ETAG (C1),
 TAG (C2)
 NumericConst
 ETAG (C2)
 [TAG (C3)

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 89

 NumericConst
 ETAG (C3)]
 TAG (A1)
 NumericConst
 ETAG (A1)
 TAG (A2)
 NumericConst
 ETAG (A2)
 [TAG (R)
 NumericConst
 ETAG (R)]
 ETAG (ARC).

LineFormSegment = StructureValue.

SegmentSequence = StartSegment (* StraightSegment
 | ArcSegment
 | LineFormSegment *).

ClippedSegment = TAG (CLIPPED)
 SegmentSequence
 ETAG (CLIPPED).

LineAttr = TAG (LINEATTR)
 StructureValue
 ETAG (LINEATTR).

Straight segments of a line string are coded in accordance with the rule StraightSegment, for arc
segments the rule ArcSegment applies. Line segments defined with LINE FORM are coded as structures
(LineStructure).

Note: For arc segments (rule ArcSegment) the radius (optional XML-attribute R) is transmitted
redundantly to the intermediate point coordinate (A1/A2). The intermediate point of an arc is only of
significance for its position. Its höhe must be interpolated linearly between start and end point. If the arc
has been defined clockwise (from start to end point), the radius will have a positive sign, otherwise
negative. If differences occur between radius and coordinate values, it is the radius that prevails (cf.
chapter 2.8.12.2 Line strings with straight line segments and circle arcs as predefined curve segments).
The vertex height (C3) only has to be transferred with 3D-line strings.

In the case of an entire set of data, SegmentSequence is mandatory and no ClippedSegments may
occur. If out of an entire set of data only a section is transferred, any number of ClippedSegments may
occur instead of SegmentSequence.

3.3.11.13 Coding of surfaces and tessellations
SURFACE and AREA are coded as follows:

SurfaceValue = TAG (SURFACE)
 Boundaries | (* ClippedBoundaries *)
 ETAG (SURFACE).

Boundaries = OuterBoundary { InnerBoundary }.

OuterBoundary = Boundary.

InnerBoundary = Boundary.

ClippedBoundaries = TAG (CLIPPED)
 Boundaries
 ETAG (CLIPPED).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 90

Boundary = TAG (BOUNDARY)
 (* PolylineValue *)
 ETAG (BOUNDARY).

Surfaces are transmitted as a sequence of boundaries. A boundary is a sequence of boundary lines, the
next boundary line starting with the end point of the preceding boundary line. The end point of the last
boundary line is identical with the start point of the first boundary line. Thus the boundary lines form a
closed line string (polygon). A boundary may be parted into boundary lines at any vertex of your
choosing. The segments may differ with every transfer – above all with incremental updates.

The first boundary of a surface (OuterBoundary) is the outer boundary of a surface, possibly followed by
inner boundaries (InnerBoundary) of the surface which limit the enclosures of the surface. The inner
boundaries must be located completely within the outer boundaries. The individual boundaries of a
surface may not overlap.

If SURFACE or AREA have been defined with line attributes, the structure element of the line attribute
must be transmitted with each PolylineValue (rule LineAttr in PolylineValue).

With tessellation (AREA) all boundary lines of the surface must coincide with the boundary lines of the
neighboring surface(s), unless they form part of the perimeter of the area network. Two boundary lines
are considered identical if in every segment of the boundary line all vertices are identical with the
corresponding segment of the neighboring surface. With arc vertices merely the sign of the arc radius
may differ. If line attributes have been defined for the area network, the line attribute values for the
boundary lines must be identical in pairs of two.

In the case of an entire data set Boundaries is mandatory with the rule SurfaceValue and no
ClippedBoundaries may occur. If out of an entire set of data only a section is transferred, any number of
ClippedBoundaries may occur instead of Boundaries. Each ClippedBoundaries-element itself has to meet
the rules of the SURFACE type.

3.3.11.14 Coding of references
Attributes of the type REFERENCE TO are coded as follows:

ReferenceAttribute = [TAG (%AttributeName%,
 'REF=' XML-ID [, 'BID=' XML-ID])
 ETAG (%AttributeName%)].

The XML-attributes REF and BID have the same significance as with proper relationships.

3.3.11.15 Coding of meta objects
Attributes of the type METAOBJECT (cf. the corresponding class in appendix A The internal INTERLIS-
data model) are coded in accordance with chapter 3.3.11.10 Coding of ordered and not-ordered
substructures. However parameters of the type METAOBJECT (rule ParameterDef) are not transmitted.
Parameters of the type METAOBJECT OF are transmitted as attributes of the type NAME.

3.3.11.16 Coding of the OIDType
Attribute values of the type OIDType are coded in the same way as an XML-ID incl. Oid-domain. If
OIDType is a NumericType the rules governing the coding of numeric types also have to be applied for
the value (without the Oid-domain).

OIDAttributeValue = [TAG (%AttributeName%,
 'OID=' XML-ID)
 ETAG (%AttributeName%)].

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 91

3.4 Application of XML-tools
Since the INTERLIS 2-transfer is based entirely on XML 1.0, it is possible to use either INTERLIS or
XML-tools for the processing (resp. analysis) of INTERLIS-objects. However the following differences
have to be taken into consideration:

• Besides the XML-data set, INTERLIS 2-tools will also recognize the corresponding INTERLIS 2-
data models. Thus e.g. an INTERLIS-controlling tool will in general be able to execute more
rigorous tests than a mere XML-tool could.

• INTERLIS 2-tools know all the specific INTERLIS-data types such as COORD, POLYLINE,
SURFACE etc. Hence an INTERLIS 2-browser will be able to represent data sets also graphically,
whereas a mere XML-browser will only visualize the structure of the document.

• INTERLIS 2-tools support polymorph reading of data via Alias-table. Therefore an INTERLIS-
import program will be able to read of an extended model much in the same way as data of a base
model. With a mere XML-tool polymorph reading is not automatically possible.

• Furthermore INTERLIS 2-tools can support the translation of schema-names via Alias-table. Again
this would not be possible with mere XML-tools.

Despite all these differences general XML-tools may be directly employed for several purposes. Amongst
others we would like to name the filtering of data sets, the editing of data-sets with XML-editors, the
examination of transfer-data sets, the translation into other formats, etc.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 92

Appendix A (normative) The internal INTERLIS-data model

Hereafter the entire internal data model has been summarized once more. This model only serves to
illustrate our explanations and cannot be compiled (because for instance it uses names which are
keywords according to the language definition (c f. chapter 2.2.7 Special symbols and reserved words).
Any software processing INTERLIS, such as the INTERLIS-compiler placed at your disposal by KOGIS,
must be able to recognize all elements of this model.

INTERLIS 2.3;

CONTRACTED TYPE MODEL INTERLIS (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 LINE FORM
 STRAIGHTS;
 ARCS;

 UNIT
 ANYUNIT (ABSTRACT);
 DIMENSIONLESS (ABSTRACT);
 LENGTH (ABSTRACT);
 MASS (ABSTRACT);
 TIME (ABSTRACT);
 ELECTRIC_CURRENT (ABSTRACT);
 TEMPERATURE (ABSTRACT);
 AMOUNT_OF_MATTER (ABSTRACT);
 ANGLE (ABSTRACT);
 SOLID_ANGLE (ABSTRACT);
 LUMINOUS_INTENSITY (ABSTRACT);
 MONEY (ABSTRACT);

 METER [m] EXTENDS LENGTH;
 KILOGRAM [kg] EXTENDS MASS;
 SECOND [s] EXTENDS TIME;
 AMPERE [A] EXTENDS ELECTRIC_CURRENT;
 DEGREE_KELVIN [K] EXTENDS TEMPERATURE;
 MOLE [mol] EXTENDS AMOUNT_OF_MATTER;
 RADIAN [rad] EXTENDS ANGLE;
 STERADIAN [sr] EXTENDS SOLID_ANGLE;
 CANDELA [cd] EXTENDS LUMINOUS_INTENSITY;

 DOMAIN
 URI (FINAL) = TEXT*1023;
 NAME (FINAL) = TEXT*255;
 INTERLIS_1_DATE (FINAL) = TEXT*8;
 BOOLEAN (FINAL) = (
 false,
 true) ORDERED;
 HALIGNMENT (FINAL) = (
 Left,
 Center,
 Right) ORDERED;
 VALIGNMENT (FINAL) = (
 Top,
 Cap,
 Half,
 Base,
 Bottom) ORDERED;
 ANYOID = OID ANY;
 I32OID = OID 0 .. 2147483647;
 STANDARDOID = OID TEXT*16;
 UUIDOID = OID TEXT*36;
 LineCoord (ABSTRACT) = COORD NUMERIC, NUMERIC;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 93

 FUNCTION myClass (Object: ANYSTRUCTURE): STRUCTURE;
 FUNCTION isSubClass (potSubClass: STRUCTURE; potSuperClass: STRUCTURE):
 BOOLEAN;
 FUNCTION isOfClass (Object: ANYSTRUCTURE; Class: STRUCTURE): BOOLEAN;
 FUNCTION elementCount (bag: BAG OF ANYSTRUCTURE): NUMERIC;
 FUNCTION objectCount (Objects: OBJECTS OF ANYCLASS): NUMERIC;
 FUNCTION len (TextVal: TEXT): NUMERIC;
 FUNCTION lenM (TextVal: MTEXT): NUMERIC;
 FUNCTION trim (TextVal: TEXT): TEXT;
 FUNCTION trimM (TextVal: MTEXT): MTEXT;
 FUNCTION isEnumSubVal (SubVal: ENUMTREEVAL; NodeVal: ENUMTREEVAL): BOOLEAN;
 FUNCTION inEnumRange (Enum: ENUMVAL;
 MinVal: ENUMTREEVAL;
 MaxVal: ENUMTREEVAL): BOOLEAN;
 FUNCTION convertUnit (from: NUMERIC): NUMERIC;
 FUNCTION areAreas (Objects: OBJECTS OF ANYCLASS;
 SurfaceBag: ATTRIBUTE OF @ Objects
 RESTRICTION (BAG OF ANYSTRUCTURE);
 SurfaceAttr: ATTRIBUTE OF @ SurfaceBag
 RESTRICTION (SURFACE)): BOOLEAN;

 CLASS METAOBJECT (ABSTRACT) =
 Name: MANDATORY NAME;
 UNIQUE Name;
 END METAOBJECT;

 CLASS METAOBJECT_TRANSLATION =
 Name: MANDATORY NAME;
 NameInBaseLanguage: MANDATORY NAME;
 UNIQUE Name;
 UNIQUE NameInBaseLanguage;
 END METAOBJECT_TRANSLATION;

 STRUCTURE AXIS =
 PARAMETER
 Unit: NUMERIC [ANYUNIT];
 END AXIS;

 CLASS REFSYSTEM (ABSTRACT) EXTENDS METAOBJECT =
 END REFSYSTEM;

 CLASS COORDSYSTEM (ABSTRACT) EXTENDS REFSYSTEM =
 ATTRIBUTE
 Axis: LIST {1..3} OF AXIS;
 END COORDSYSTEM;

 CLASS SCALSYSTEM (ABSTRACT) EXTENDS REFSYSTEM =
 PARAMETER
 Unit: NUMERIC [ANYUNIT];
 END SCALSYSTEM;

 CLASS SIGN (ABSTRACT) EXTENDS METAOBJECT =
 PARAMETER
 Sign: METAOBJECT;
 END SIGN;

 TOPIC TIMESYSTEMS =

 CLASS CALENDAR EXTENDS INTERLIS.SCALSYSTEM =
 PARAMETER
 Unit(EXTENDED): NUMERIC [TIME];
 END CALENDAR;

 CLASS TIMEOFDAYSYS EXTENDS INTERLIS.SCALSYSTEM =
 PARAMETER
 Unit(EXTENDED): NUMERIC [TIME];

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 94

 END TIMEOFDAYSYS;

 END TIMESYSTEMS;

 UNIT
 Minute [min] = 60 [INTERLIS.s];
 Hour [h] = 60 [min];
 Day [d] = 24 [h];
 Month [M] EXTENDS INTERLIS.TIME;
 Year [Y] EXTENDS INTERLIS.TIME;

 REFSYSTEM BASKET BaseTimeSystems ~ TIMESYSTEMS
 OBJECTS OF CALENDAR: GregorianCalendar
 OBJECTS OF TIMEOFDAYSYS: UTC;

 STRUCTURE TimeOfDay (ABSTRACT) =
 Hours: 0 .. 23 CIRCULAR [h];
 CONTINUOUS SUBDIVISION Minutes: 0 .. 59 CIRCULAR [min];
 CONTINUOUS SUBDIVISION Seconds: 0.000 .. 59.999 CIRCULAR [INTERLIS.s];
 END TimeOfDay;

 STRUCTURE UTC EXTENDS TimeOfDay =
 Hours(EXTENDED): 0 .. 23 {UTC};
 END UTC;

 DOMAIN
 GregorianYear = 1582 .. 2999 [Y] {GregorianCalendar};

 STRUCTURE GregorianDate =
 Year: GregorianYear;
 SUBDIVISION Month: 1 .. 12 [M];
 SUBDIVISION Day: 1 .. 31 [d];
 END GregorianDate;

 STRUCTURE GregorianDateTime EXTENDS GregorianDate =
 SUBDIVISION Hours: 0 .. 23 CIRCULAR [h] {UTC};
 CONTINUOUS SUBDIVISION Minutes: 0 .. 59 CIRCULAR [min];
 CONTINUOUS SUBDIVISION Seconds: 0.000 .. 59.999 CIRCULAR [INTERLIS.s];
 END GregorianDateTime;

 DOMAIN XMLTime = FORMAT BASED ON UTC (Hours/2 ":" Minutes ":" Seconds);
 DOMAIN XMLDate = FORMAT BASED ON GregorianDate (Year "-" Month "-" Day);
 DOMAIN XMLDateTime EXTENDS XMLDate = FORMAT BASED ON GregorianDateTime
 (INHERITANCE "T" Hours/2 ":" Minutes
 ":" Seconds);

 STRUCTURE LineSegment (ABSTRACT) =
 SegmentEndPoint: MANDATORY LineCoord;
 END LineSegment;

 STRUCTURE StartSegment (FINAL) EXTENDS LineSegment =
 END StartSegment;

 STRUCTURE StraightSegment (FINAL) EXTENDS LineSegment =
 END StraightSegment;

 STRUCTURE ArcSegment (FINAL) EXTENDS LineSegment =
 ArcPoint: MANDATORY LineCoord;
 Radius: NUMERIC [LENGTH];
 END ArcSegment;

 STRUCTURE SurfaceEdge =
 Geometry: DIRECTED POLYLINE;
 LineAttrs: ANYSTRUCTURE;
 END SurfaceEdge;

 STRUCTURE SurfaceBoundary =
 Lines: LIST OF SurfaceEdge;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 95

 END SurfaceBoundary;

 STRUCTURE LineGeometry =
 Segments: LIST OF LineSegment;
 MANDATORY CONSTRAINT isOfClass (Segments[FIRST],StartSegment);
 END LineGeometry;

END INTERLIS.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 96

Appendix B (normative for CH) Symbol table

In the table below you will find all available standard INTERLIS 2-symbols, as well as special symbols,
umlauts and diacritic marks and their coding in an INTERLIS-transfer. For some of these symbols various
forms of coding are at your disposal and in these cases all possible forms of coding of the symbol are
stated. Whenever several coding possibilities exist, an INTERLIS 2-writing program will select one of
these possibilities. An INTERLIS 2-reading program must be able to recognize all of these forms of
coding for one symbol.

The table only applies to XML-Content (i.e. XML-String, XML-NormalizedString resp. XML-Value). XML-
Tags are transmitted exclusively as ASCII-coded symbols in accordance with the syntax of chapter 3.

Besides the standard symbols listed in the table other symbols can be used in INTERLIS 2-applications,
provided a contract has been agreed to between the parties concerned.

Tabulator (TAB, #x9), Carriage return (CR, #xD) and Line feed (LF, #xA) are the only admissible control
codes. However they may only occur within the scope of the coding of MTEXT (cf. chapter 2.8.1 Strings
and chapter 3.3.11.2 Coding of strings).

UCS
Hex

UCS
Dec

UTF-8 Coding
Octet Hex

XML Coding
Character Reference
Dec

XML Coding
Character Reference
Hex

XML Coding
Entity Reference

Represen-
ted as

0020 32 20
0021 33 21 !
0022 34 " " " "
0023 35 23 #
0024 36 24 $
0025 37 25 %
0026 38 & & & &
0027 39 ' ' ' '
0028 40 28 (
0029 41 29)
002A 42 2A *
002B 43 2B +
002C 44 2C ,
002D 45 2D -
002E 46 2E .
002F 47 2F /
0030 48 30 0
0031 49 31 1
0032 50 32 2
0033 51 33 3
0034 52 34 4
0035 53 35 5
0036 54 36 6
0037 55 37 7
0038 56 38 8
0039 57 39 9
003A 58 3A :
003B 59 3B ;
003C 60 < < < <
003D 61 3D =

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 97

UCS
Hex

UCS
Dec

UTF-8 Coding
Octet Hex

XML Coding
Character Reference
Dec

XML Coding
Character Reference
Hex

XML Coding
Entity Reference

Represen-
ted as

003E 62 > > > >
003F 63 3F ?
0040 64 40 @
0041 65 41 A
0042 66 42 B
0043 67 43 C
0044 68 44 D
0045 69 45 E
0046 70 46 F
0047 71 47 G
0048 72 48 H
0049 73 49 I
004A 74 4A J
004B 75 4B K
004C 76 4C L
004D 77 4D M
004E 78 4E N
004F 79 4F O
0050 80 50 P
0051 81 51 Q
0052 82 52 R
0053 83 53 S
0054 84 54 T
0055 85 55 U
0056 86 56 V
0057 87 57 W
0058 88 58 X
0059 89 59 Y
005A 90 5A Z
005B 91 5B [
005C 92 5C \
005D 93 5D]
005E 94 5E ^
005F 95 5F _
0060 96 60 `
0061 97 61 a
0062 98 62 b
0063 99 63 c
0064 100 64 d
0065 101 65 e
0066 102 66 f
0067 103 67 g
0068 104 68 h
0069 105 69 i
006A 106 6A j
006B 107 6B k
006C 108 6C l
006D 109 6D m
006E 110 6E n
006F 111 6F o
0070 112 70 p
0071 113 71 q
0072 114 72 r

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 98

UCS
Hex

UCS
Dec

UTF-8 Coding
Octet Hex

XML Coding
Character Reference
Dec

XML Coding
Character Reference
Hex

XML Coding
Entity Reference

Represen-
ted as

0073 115 73 s
0074 116 74 t
0075 117 75 u
0076 118 76 v
0077 119 77 w
0078 120 78 x
0079 121 79 y
007A 122 7A z
007B 123 7B {
007C 124 7C |
007D 125 7D }
007E 126 7E ~
00A7 167 C2 A7 § § §
00AB 171 C2 AB « « «
00BB 187 C2 BB » » »
00C4 196 C3 84 Ä Ä Ä
00C6 198 C3 86 Æ Æ Æ
00C7 199 C3 87 Ç Ç Ç
00C8 200 C3 88 È È È
00C9 201 C3 89 É É É
00D1 209 C3 91 Ñ Ñ Ñ
00D6 214 C3 96 Ö Ö Ö
00DC 220 C3 9C Ü Ü Ü
00E0 224 C3 A0 à à à
00E1 225 C3 A1 á á á
00E2 226 C3 A2 â â â
00E4 228 C3 A4 ä ä ä
00E6 230 C3 A6 æ æ æ
00E7 231 C3 A7 ç ç ç
00E8 232 C3 A8 è è è
00E9 233 C3 A9 é é é
00EA 234 C3 AA ê ê ê
00EB 235 C3 AB ë ë ë
00EC 236 C3 AC ì ì ì
00ED 237 C3 AD í í í
00EE 238 C3 AE î î î
00EF 239 C3 AF ï ï ï
00F1 241 C3 B1 ñ ñ ñ
00F2 242 C3 B2 ò ò ò
00F3 243 C3 B3 ó ó ó
00F4 244 C3 B4 ô ô ô
00F5 245 C3 B5 õ õ õ
00F6 246 C3 B6 ö ö ö
00F9 249 C3 B9 ù ù ù
00FA 250 C3 BA ú ú ú
00FB 251 C3 BB û û û
00FC 252 C3 BC ü ü Ü
20AC 8364 E2 82 AC € %#x20ac €

Table 2: Unicode symbols permitted in INTERLIS and their coding.

Notes:

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

INTERLIS Version 2 - Reference Manual Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 99

• In the columns UCS/Hex resp. UCS/Decimal the UCS (resp. Unicode) code of the symbol has
been indicated (hexadecimal, resp. decimal).

• In the column UTF-8 coding the coding of the symbol has been indicated according to UTF-8 as
8bit bytes (octet) in hexadecimal notation. The symbols >= Hex 80 are coded as multiple byte
sequences. Note: The hexadecimal notation is only used to illustrate the coding. Only binary coded
octets are transmitted on the transfer-file.

• In the columns XML coding character reference (Dec), resp. character reference (Hex) the coding
of the symbol is indicated as XML character reference (decimal, resp. hexadecimal variant). This
value is an ASCII-symbol sequence and must be used strictly accurate in the transfer. Whenever
possible a writing program should select the character reference coding for the symbol. The
advantage of character reference coding lies in its ability to be indicated, resp. edited with simple
ASCII-editors on any platform (Unix, PC etc.). Note: With the hexadecimal coding variant the letters
a-f can be listed in capitals or small letters (however the x in the hexadecimal variant must always
be a small letter).

• The XML-coding (Entity Reference) is only admissible for some few special symbols. Its value is an
ASCII-sequence which has to be used accurately in the transfer. Note: XML-entities such as
ü (for the symbol ü) are not admissible in an INTERLIS 2 transfer-file, since no DTD will be
referenced by an INTERLIS 2 transfer-file (permissible entities such as & have been
predefined in the XML 1.0 specification).

• In the column representation you will find the representation of the symbol in a UCS, resp. Unicode
compatible editor.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 100

Appendix C (informative) A small example Roads

Introduction

In order to facilitate your entry into INTERLIS 2, we provide a small but nevertheless complete example. It
describes a data set designed for a complete data t ransfer. For examples of application with incremental
update (including OID), we supply the necessary test data sets and user manuals.

The example consists of the following parts:

• Data model RoadsExdm2ben and RoadsExdm2ien.

• XML-data set RoadsExdm2ien (file RoadsExdm2ien.xml) which contains objects in accordance
with the data model RoadsExdm2ien.

• Graphic model RoadsExgm2ien. One possible representation for the data model RoadsExdm2ien
is defined in the graphic model (Note: any number of representations is possible for one single data
model).

• Collection of symbol objects (symbol library) in RoadsExgm2ien_Symbols (file
RoadsExgm2ien_Symbols.xml). The symbol library is an XML-data set in accordance with the
symbology model StandardSymbology (cf. appendix J Symbology models). The symbol library is
used in the graphic model RoadsExgm2ien for the representation of exemplifying data from the
RoadsExdm2ien.xml-data set.

The name "RoadsExdm2ben" is an abbreviation of "RoadsExample, data model, INTERLIS 2, basic
model, english". Hereafter the individual parts will be described more in detail.

Figure 26: UML-class diagram of data models.

Data model RoadsExdm2ben and RoadsExdm2ien

 StreetAxis
 +Geometry

 LandCover
 +Type
+Geometry

 Street
 +Name

 StreetNamePosition
 + NamPos
+ NamOri

 RoadSign
 +Type
+Position

 0..* 0..*

 1 1

 Street

St
re

et
Ax

is
 Street

St
re

et
N

am
eP

os
itio

n

 StreetAxis
 +Precision

 RoadSign
 +Type

 TOPIC Roads

TOPIC RoadsExtended
EXTENDS Roads

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 101

The data model RoadsExdm2ben contains the objects LandCover, StreetAxis, StreetName and
PointObject. The data model RoadsExdm2ien is an extension of RoadsExdm2ben. The UML-class
diagram above (see figure 26) supplies a comprehensive over-view of the data models.

Note: It is on purpose that the example chosen is very simple and we do not lay claim to completeness.
The corresponding models defined in INTERLIS 2 read as follows:

!! File RoadsExdm2ben.ili Release 2005-06-16

INTERLIS 2.3;

MODEL RoadsExdm2ben (en) AT "http://www.interlis.ch/models"
 VERSION "2005-06-16" =

 UNIT
 Angle_Degree = 180 / PI [INTERLIS.rad];

 DOMAIN
 Point2D = COORD
 0.000 .. 200.000 [INTERLIS.m], !! Min_East Max_East
 0.000 .. 200.000 [INTERLIS.m], !! Min_North Max_North
 ROTATION 2 -> 1;
 Orientation = 0.0 .. 359.9 CIRCULAR [Angle_Degree];

 TOPIC Roads =

 STRUCTURE LAttrs =
 LArt: (
 welldefined,
 fuzzy);
 END LAttrs;

 CLASS LandCover =
 Type: MANDATORY (
 building,
 street,
 water,
 other);
 Geometry: MANDATORY SURFACE WITH (STRAIGHTS)
 VERTEX Point2D WITHOUT OVERLAPS > 0.100
 LINE ATTRIBUTES LAttrs;
 END LandCover;

 CLASS Street =
 Name: MANDATORY TEXT*32;
 END Street;

 CLASS StreetAxis =
 Geometry: MANDATORY POLYLINE WITH (STRAIGHTS)
 VERTEX Point2D;
 END StreetAxis;

 ASSOCIATION StreetAxisAssoc =
 Street -- {1} Street;
 StreetAxis -- StreetAxis;
 END StreetAxisAssoc;

 CLASS StreetNamePosition =
 NamPos: MANDATORY Point2D;
 NamOri: MANDATORY Orientation;
 END StreetNamePosition;

 ASSOCIATION StreetNamePositionAssoc =
 Street -- {0..1} Street;
 StreetNamePosition -- StreetNamePosition;
 END StreetNamePositionAssoc;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 102

 CLASS RoadSign =
 Type: MANDATORY (
 prohibition,
 indication,
 danger,
 velocity);
 Position: MANDATORY Point2D;
 END RoadSign;

 END Roads; !! of TOPIC

END RoadsExdm2ben. !! of MODEL

!! File RoadsExdm2ien.ili Release 2005-06-16

INTERLIS 2.3;

MODEL RoadsExdm2ien (en) AT "http://www.interlis.ch/models"
 VERSION "2005-06-16" =

 IMPORTS RoadsExdm2ben;

 TOPIC RoadsExtended EXTENDS RoadsExdm2ben.Roads =

 CLASS StreetAxis (EXTENDED) =
 Precision: MANDATORY (
 precise,
 unprecise);
 END StreetAxis;

 CLASS RoadSign (EXTENDED) =
 Type (EXTENDED): (
 prohibition (
 noentry,
 noparking,
 other));
 END RoadSign;

 END RoadsExtended; !! of TOPIC

END RoadsExdm2ien. !! of MODEL

Data set RoadsExdm2ien in accordance with data model RoadsExdm2ien

Below you will find an exemplary data set for the data model RoadsExdm2ien. The XML-formatting has
been derived from the data model RoadsExdm2ien by means of the rules stated in chapter 3 Sequential
Transfer.

<?xml version="1.0" encoding="UTF-8"?>

<!-- File RoadsExdm2ien.xml 2005-06-16 (http://www.interlis.ch/models) -->

<TRANSFER xmlns="http://www.interlis.ch/INTERLIS2.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.interlis.ch/INTERLIS2.3
 RoadsExdm2ien.xsd">
 <HEADERSECTION VERSION="2.3" SENDER="KOGIS">
 <MODELS>
 <MODEL NAME="RoadsExdm2ben" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 <MODEL NAME="RoadsExdm2ien" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 </MODELS>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 103

 <ALIAS>
 <ENTRIES FOR="RoadsExdm2ben">
 <TAGENTRY FROM="RoadsExdm2ben.Roads"
 TO="RoadsExdm2ben.Roads"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended"
 TO="RoadsExdm2ben.Roads"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.LAttrs"
 TO="RoadsExdm2ben.Roads.LAttrs"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.LandCover"
 TO="RoadsExdm2ben.Roads.LandCover"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.Street"
 TO="RoadsExdm2ben.Roads.Street"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetAxis"
 TO="RoadsExdm2ben.Roads.StreetAxis"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.StreetAxis"
 TO="RoadsExdm2ben.Roads.StreetAxis"/>
 <DELENTRY TAG="RoadsExdm2ien.RoadsExtended.StreetAxis"
 ATTR="Precision"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetAxisAssoc"
 TO="RoadsExdm2ben.Roads.StreetAxisAssoc"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetNamePosition"
 TO="RoadsExdm2ben.Roads.StreetNamePosition"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetNamePositionAssoc"
 TO="RoadsExdm2ben.Roads.StreetNamePositionAssoc"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.RoadSign"
 TO="RoadsExdm2ben.Roads.RoadSign"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.RoadSign"
 TO="RoadsExdm2ben.Roads.RoadSign"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LAttrs" ATTR="LArt"
 FROM="welldefined" TO="welldefined"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LAttrs" ATTR="LArt"
 FROM="fuzzy" TO="fuzzy"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="building" TO="building"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="street" TO="street"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="water" TO="water"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="other" TO="other"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"
 FROM="prohibition" TO="prohibition"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"
 FROM="indication" TO="indication"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"
 FROM="danger" TO="danger"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"
 FROM="velocity" TO="velocity"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noentry" TO="prohibition"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noparking" TO="prohibition"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.other" TO="prohibition"/>
 </ENTRIES>

 <ENTRIES FOR="RoadsExdm2ien">
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended"
 TO="RoadsExdm2ien.RoadsExtended"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.StreetAxis"
 TO="RoadsExdm2ien.RoadsExtended.StreetAxis"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.RoadSign"
 TO="RoadsExdm2ien.RoadsExtended.RoadSign"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.StreetAxis" ATTR="Precision"
 FROM="precise" TO="precise"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.StreetAxis" ATTR="Precision"
 FROM="unprecise" TO="unprecise"/>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 104

 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noentry" TO="prohibition.noentry"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noparking" TO="prohibition.noparking"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.other" TO="prohibition.other"/>
 </ENTRIES>
 </ALIAS>

 <COMMENT>
 example dataset ili2 refmanual appendix C
 </COMMENT>
 </HEADERSECTION>

 <DATASECTION>
 <RoadsExdm2ien.RoadsExtended BID="REFHANDB00000001">

 <!-- === LandCover === -->
 <RoadsExdm2ben.Roads.LandCover TID="16">
 <Type>water</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>39.038</C1><C2>60.315</C2></COORD>
 <COORD><C1>41.200</C1><C2>59.302</C2></COORD>
 <COORD><C1>43.362</C1><C2>60.315</C2></COORD>
 <COORD><C1>44.713</C1><C2>66.268</C2></COORD>
 <COORD><C1>45.794</C1><C2>67.662</C2></COORD>
 <COORD><C1>48.766</C1><C2>67.408</C2></COORD>
 <COORD><C1>53.360</C1><C2>64.115</C2></COORD>
 <COORD><C1>56.197</C1><C2>62.595</C2></COORD>
 <COORD><C1>57.818</C1><C2>63.862</C2></COORD>
 <COORD><C1>58.899</C1><C2>68.928</C2></COORD>
 <COORD><C1>55.927</C1><C2>72.348</C2></COORD>
 <COORD><C1>47.955</C1><C2>75.515</C2></COORD>
 <COORD><C1>42.281</C1><C2>75.388</C2></COORD>
 <COORD><C1>39.308</C1><C2>73.235</C2></COORD>
 <COORD><C1>36.741</C1><C2>69.688</C2></COORD>
 <COORD><C1>35.525</C1><C2>66.268</C2></COORD>
 <COORD><C1>35.661</C1><C2>63.735</C2></COORD>
 <COORD><C1>37.957</C1><C2>61.455</C2></COORD>
 <COORD><C1>39.038</C1><C2>60.315</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="18">
 <Type>building</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>101.459</C1><C2>65.485</C2></COORD>
 <COORD><C1>108.186</C1><C2>69.369</C2></COORD>
 <COORD><C1>102.086</C1><C2>79.936</C2></COORD>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 105

 <COORD><C1>95.359</C1><C2>76.053</C2></COORD>
 <COORD><C1>101.459</C1><C2>65.485</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="20">
 <Type>building</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>60.489</C1><C2>49.608</C2></COORD>
 <COORD><C1>79.900</C1><C2>55.839</C2></COORD>
 <COORD><C1>75.351</C1><C2>70.932</C2></COORD>
 <COORD><C1>67.678</C1><C2>68.781</C2></COORD>
 <COORD><C1>69.938</C1><C2>61.721</C2></COORD>
 <COORD><C1>57.582</C1><C2>58.029</C2></COORD>
 <COORD><C1>60.489</C1><C2>49.608</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="22">
 <Type>street</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>45.067</C1><C2>58.655</C2></COORD>
 <COORD><C1>50.669</C1><C2>42.579</C2></COORD>
 <COORD><C1>57.060</C1><C2>44.638</C2></COORD>
 <COORD><C1>51.432</C1><C2>60.469</C2></COORD>
 <COORD><C1>45.067</C1><C2>58.655</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="24">
 <Type>other</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>114.027</C1><C2>99.314</C2></COORD>
 <COORD><C1>31.351</C1><C2>99.314</C2></COORD>
 <COORD><C1>31.140</C1><C2>92.530</C2></COORD>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 106

 <COORD><C1>70.419</C1><C2>86.177</C2></COORD>
 <COORD><C1>86.481</C1><C2>79.710</C2></COORD>
 <COORD><C1>114.027</C1><C2>99.314</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="26">
 <Type>other</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>113.559</C1><C2>62.880</C2></COORD>
 <COORD><C1>114.027</C1><C2>99.314</C2></COORD>
 <COORD><C1>86.481</C1><C2>79.710</C2></COORD>
 <COORD><C1>94.381</C1><C2>66.289</C2></COORD>
 <COORD><C1>96.779</C1><C2>57.177</C2></COORD>
 <COORD><C1>113.559</C1><C2>62.880</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>108.186</C1><C2>69.369</C2></COORD>
 <COORD><C1>101.459</C1><C2>65.485</C2></COORD>
 <COORD><C1>95.359</C1><C2>76.053</C2></COORD>
 <COORD><C1>102.086</C1><C2>79.936</C2></COORD>
 <COORD><C1>108.186</C1><C2>69.369</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="29">
 <Type>street</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>100.621</C1><C2>24.239</C2></COORD>
 <COORD><C1>109.729</C1><C2>24.239</C2></COORD>
 <COORD><C1>105.640</C1><C2>48.068</C2></COORD>
 <COORD><C1>96.779</C1><C2>45.088</C2></COORD>
 <COORD><C1>100.621</C1><C2>24.239</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 107

 <RoadsExdm2ben.Roads.LandCover TID="31">
 <Type>other</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>30.900</C1><C2>24.478</C2></COORD>
 <COORD><C1>100.621</C1><C2>24.239</C2></COORD>
 <COORD><C1>96.779</C1><C2>45.088</C2></COORD>
 <COORD><C1>30.900</C1><C2>24.478</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="33">
 <Type>other</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>31.110</C1><C2>83.750</C2></COORD>
 <COORD><C1>31.140</C1><C2>36.458</C2></COORD>
 <COORD><C1>50.669</C1><C2>42.579</C2></COORD>
 <COORD><C1>45.067</C1><C2>58.655</C2></COORD>
 <COORD><C1>51.432</C1><C2>60.469</C2></COORD>
 <COORD><C1>57.060</C1><C2>44.638</C2></COORD>
 <COORD><C1>87.839</C1><C2>54.138</C2></COORD>
 <COORD><C1>85.282</C1><C2>63.410</C2></COORD>
 <COORD><C1>78.847</C1><C2>73.433</C2></COORD>
 <COORD><C1>67.549</C1><C2>77.788</C2></COORD>
 <COORD><C1>31.110</C1><C2>83.750</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>41.200</C1><C2>59.302</C2></COORD>
 <COORD><C1>39.038</C1><C2>60.315</C2></COORD>
 <COORD><C1>37.957</C1><C2>61.455</C2></COORD>
 <COORD><C1>35.661</C1><C2>63.735</C2></COORD>
 <COORD><C1>35.525</C1><C2>66.268</C2></COORD>
 <COORD><C1>36.741</C1><C2>69.688</C2></COORD>
 <COORD><C1>39.308</C1><C2>73.235</C2></COORD>
 <COORD><C1>42.281</C1><C2>75.388</C2></COORD>
 <COORD><C1>47.955</C1><C2>75.515</C2></COORD>
 <COORD><C1>55.927</C1><C2>72.348</C2></COORD>
 <COORD><C1>58.899</C1><C2>68.928</C2></COORD>
 <COORD><C1>57.818</C1><C2>63.862</C2></COORD>
 <COORD><C1>56.197</C1><C2>62.595</C2></COORD>
 <COORD><C1>53.360</C1><C2>64.115</C2></COORD>
 <COORD><C1>48.766</C1><C2>67.408</C2></COORD>
 <COORD><C1>45.794</C1><C2>67.662</C2></COORD>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 108

 <COORD><C1>44.713</C1><C2>66.268</C2></COORD>
 <COORD><C1>43.362</C1><C2>60.315</C2></COORD>
 <COORD><C1>41.200</C1><C2>59.302</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>79.900</C1><C2>55.839</C2></COORD>
 <COORD><C1>60.489</C1><C2>49.608</C2></COORD>
 <COORD><C1>57.582</C1><C2>58.029</C2></COORD>
 <COORD><C1>69.938</C1><C2>61.721</C2></COORD>
 <COORD><C1>67.678</C1><C2>68.781</C2></COORD>
 <COORD><C1>75.351</C1><C2>70.932</C2></COORD>
 <COORD><C1>79.900</C1><C2>55.839</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="37">
 <Type>street</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>31.140</C1><C2>92.530</C2></COORD>
 <COORD><C1>31.110</C1><C2>83.750</C2></COORD>
 <COORD><C1>67.549</C1><C2>77.788</C2></COORD>
 <COORD><C1>78.847</C1><C2>73.433</C2></COORD>
 <COORD><C1>85.282</C1><C2>63.410</C2></COORD>
 <COORD><C1>87.839</C1><C2>54.138</C2></COORD>
 <COORD><C1>96.779</C1><C2>57.177</C2></COORD>
 <COORD><C1>94.381</C1><C2>66.289</C2></COORD>
 <COORD><C1>86.481</C1><C2>79.710</C2></COORD>
 <COORD><C1>70.419</C1><C2>86.177</C2></COORD>
 <COORD><C1>31.140</C1><C2>92.530</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="39">
 <Type>other</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>113.811</C1><C2>51.168</C2></COORD>
 <COORD><C1>105.640</C1><C2>48.068</C2></COORD>
 <COORD><C1>109.729</C1><C2>24.239</C2></COORD>
 <COORD><C1>114.269</C1><C2>24.017</C2></COORD>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 109

 <COORD><C1>113.811</C1><C2>51.168</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <RoadsExdm2ben.Roads.LandCover TID="41">
 <Type>street</Type>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <LINEATTR>
 <RoadsExdm2ben.Roads.LAttrs>
 <LArt>welldefined</LArt>
 </RoadsExdm2ben.Roads.LAttrs>
 </LINEATTR>
 <COORD><C1>105.640</C1><C2>48.068</C2></COORD>
 <COORD><C1>113.811</C1><C2>51.168</C2></COORD>
 <COORD><C1>113.559</C1><C2>62.880</C2></COORD>
 <COORD><C1>96.779</C1><C2>57.177</C2></COORD>
 <COORD><C1>87.839</C1><C2>54.138</C2></COORD>
 <COORD><C1>57.060</C1><C2>44.638</C2></COORD>
 <COORD><C1>50.669</C1><C2>42.579</C2></COORD>
 <COORD><C1>31.140</C1><C2>36.458</C2></COORD>
 <COORD><C1>30.900</C1><C2>24.478</C2></COORD>
 <COORD><C1>96.779</C1><C2>45.088</C2></COORD>
 <COORD><C1>105.640</C1><C2>48.068</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </RoadsExdm2ben.Roads.LandCover>

 <!-- === Street === -->
 <RoadsExdm2ben.Roads.Street TID="1">
 <Name>Austrasse</Name>
 </RoadsExdm2ben.Roads.Street>

 <RoadsExdm2ben.Roads.Street TID="2">
 <Name>Eymattstrasse</Name>
 </RoadsExdm2ben.Roads.Street>

 <RoadsExdm2ben.Roads.Street TID="3">
 <Name>Feldweg</Name>
 </RoadsExdm2ben.Roads.Street>

 <RoadsExdm2ben.Roads.Street TID="4">
 <Name>Seeweg</Name>
 </RoadsExdm2ben.Roads.Street>

 <!-- === StreetAxis / StreetAxisAssoc === -->
 <RoadsExdm2ien.RoadsExtended.StreetAxis TID="8">
 <Geometry>
 <POLYLINE>
 <COORD><C1>55.600</C1><C2>37.649</C2></COORD>
 <COORD><C1>15.573</C1><C2>25.785</C2></COORD>
 </POLYLINE>
 </Geometry>
 <Street REF="1"></Street>
 <Precision>precise</Precision>
 </RoadsExdm2ien.RoadsExtended.StreetAxis>

 <RoadsExdm2ien.RoadsExtended.StreetAxis TID="9">
 <Geometry>
 <POLYLINE>
 <COORD><C1>55.600</C1><C2>37.649</C2></COORD>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 110

 <COORD><C1>94.990</C1><C2>50.109</C2></COORD>
 </POLYLINE>
 </Geometry>
 <Street REF="1"></Street>
 <Precision>precise</Precision>
 </RoadsExdm2ien.RoadsExtended.StreetAxis>

 <RoadsExdm2ien.RoadsExtended.StreetAxis TID="10">
 <Geometry>
 <POLYLINE>
 <COORD><C1>94.990</C1><C2>50.109</C2></COORD>
 <COORD><C1>101.099</C1><C2>52.279</C2></COORD>
 </POLYLINE>
 </Geometry>
 <Street REF="1"></Street>
 <Precision>precise</Precision>
 </RoadsExdm2ien.RoadsExtended.StreetAxis>

 <RoadsExdm2ien.RoadsExtended.StreetAxis TID="11">
 <Geometry>
 <POLYLINE>
 <COORD><C1>101.099</C1><C2>52.279</C2></COORD>
 <COORD><C1>126.100</C1><C2>62.279</C2></COORD>
 </POLYLINE>
 </Geometry>
 <Street REF="1"></Street>
 <Precision>precise</Precision>
 </RoadsExdm2ien.RoadsExtended.StreetAxis>

 <RoadsExdm2ien.RoadsExtended.StreetAxis TID="12">
 <Geometry>
 <POLYLINE>
 <COORD><C1>94.990</C1><C2>50.109</C2></COORD>
 <COORD><C1>89.504</C1><C2>65.795</C2></COORD>
 <COORD><C1>83.594</C1><C2>75.598</C2></COORD>
 <COORD><C1>71.774</C1><C2>80.712</C2></COORD>
 <COORD><C1>11.423</C1><C2>91.154</C2></COORD>
 </POLYLINE>
 </Geometry>
 <Street REF="2"></Street>
 <Precision>precise</Precision>
 </RoadsExdm2ien.RoadsExtended.StreetAxis>

 <RoadsExdm2ien.RoadsExtended.StreetAxis TID="13">
 <Geometry>
 <POLYLINE>
 <COORD><C1>101.099</C1><C2>52.279</C2></COORD>
 <COORD><C1>107.400</C1><C2>14.603</C2></COORD>
 </POLYLINE>
 </Geometry>
 <Street REF="3"></Street>
 <Precision>unprecise</Precision>
 </RoadsExdm2ien.RoadsExtended.StreetAxis>

 <RoadsExdm2ien.RoadsExtended.StreetAxis TID="15">
 <Geometry>
 <POLYLINE>
 <COORD><C1>55.600</C1><C2>37.649</C2></COORD>
 <COORD><C1>49.359</C1><C2>56.752</C2></COORD>
 </POLYLINE>
 </Geometry>
 <Street REF="4"></Street>
 <Precision>unprecise</Precision>
 </RoadsExdm2ien.RoadsExtended.StreetAxis>

 <!-- === StreetNamePosition / StreetNamePositionAssoc === -->
 <RoadsExdm2ben.Roads.StreetNamePosition TID="5">
 <NamPos>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 111

 <COORD><C1>71.660</C1><C2>45.231</C2></COORD>
 </NamPos>
 <NamOri>15.0</NamOri>
 <Street REF="1"></Street>
 </RoadsExdm2ben.Roads.StreetNamePosition>

 <RoadsExdm2ben.Roads.StreetNamePosition TID="6">
 <NamPos>
 <COORD><C1>58.249</C1><C2>85.081</C2></COORD>
 </NamPos>
 <NamOri>351.0</NamOri>
 <Street REF="2"></Street>
 </RoadsExdm2ben.Roads.StreetNamePosition>

 <RoadsExdm2ben.Roads.StreetNamePosition TID="7">
 <NamPos>
 <COORD><C1>106.095</C1><C2>33.554</C2></COORD>
 </NamPos>
 <NamOri>280.0</NamOri>
 <Street REF="3"></Street>
 </RoadsExdm2ben.Roads.StreetNamePosition>

 <RoadsExdm2ben.Roads.StreetNamePosition TID="14">
 <NamPos>
 <COORD><C1>53.031</C1><C2>51.367</C2></COORD>
 </NamPos>
 <NamOri>291.3</NamOri>
 <Street REF="4"></Street>
 </RoadsExdm2ben.Roads.StreetNamePosition>

 <!-- === RoadSign === -->
 <RoadsExdm2ien.RoadsExtended.RoadSign TID="501">
 <Type>prohibition.noparking</Type>
 <Position>
 <COORD><C1>69.389</C1><C2>92.056</C2></COORD>
 </Position>
 </RoadsExdm2ien.RoadsExtended.RoadSign>

 <RoadsExdm2ien.RoadsExtended.RoadSign TID="502">
 <Type>prohibition.noparking</Type>
 <Position>
 <COORD><C1>80.608</C1><C2>88.623</C2></COORD>
 </Position>
 </RoadsExdm2ien.RoadsExtended.RoadSign>

 <RoadsExdm2ien.RoadsExtended.RoadSign TID="503">
 <Type>prohibition.noparking</Type>
 <Position>
 <COORD><C1>58.059</C1><C2>93.667</C2></COORD>
 </Position>
 </RoadsExdm2ien.RoadsExtended.RoadSign>

 <RoadsExdm2ien.RoadsExtended.RoadSign TID="504">
 <Type>danger</Type>
 <Position>
 <COORD><C1>92.741</C1><C2>38.295</C2></COORD>
 </Position>
 </RoadsExdm2ien.RoadsExtended.RoadSign>
 </RoadsExdm2ien.RoadsExtended>
 <!-- end of basket REFHANDB00000001 -->
 </DATASECTION>
</TRANSFER>

Graphic description RoadsExgm2ien

With regard to the data model a representation is defined by means of the graphic description
RoadsExgm2ien. The graphic model reads as follows:

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 112

!! File RoadsExgm2ien.ili Release 2005-06-16

INTERLIS 2.3;

CONTRACTED MODEL RoadsExgm2ien (en) AT "http://www.interlis.ch/models"
 VERSION "2005-06-16" = !! Roads graphics

 IMPORTS RoadsExdm2ben;
 IMPORTS RoadsExdm2ien;
 IMPORTS StandardSymbology;

 SIGN BASKET StandardSymbology ~ StandardSymbology.StandardSigns
 OBJECTS OF SurfaceSign: Building, Street, Water, Other
 OBJECTS OF PolylineSign: continuous, dotted
 OBJECTS OF TextSign: Linefont_18
 OBJECTS OF SymbolSign: NoParking, GP;

 TOPIC Graphics =
 DEPENDS ON RoadsExdm2ben.Roads, RoadsExdm2ien.RoadsExtended;

 GRAPHIC Surface_Graphics
 BASED ON RoadsExdm2ien.RoadsExtended.LandCover =

 Building OF StandardSymbology.StandardSigns.SurfaceSign:
 WHERE Type == #building (
 Sign := {Building};
 Geometry := Geometry;
 Priority := 100);

 Street OF StandardSymbology.StandardSigns.SurfaceSign:
 WHERE Type == #street (
 Sign := {Street};
 Geometry := Geometry;
 Priority := 100);

 Water OF StandardSymbology.StandardSigns.SurfaceSign:
 WHERE Type == #water (
 Sign := {Water};
 Geometry := Geometry;
 Priority := 100);

 Other OF StandardSymbology.StandardSigns.SurfaceSign:
 WHERE Type == #other (
 Sign := {Other};
 Geometry := Geometry;
 Priority := 100);

 END Surface_Graphics;

 VIEW Surface_Boundary
 INSPECTION OF RoadsExdm2ien.RoadsExtended.LandCover -> Geometry;
 =
 ATTRIBUTE
 ALL OF LandCover;
 END Surface_Boundary;

 VIEW Surface_Boundary2
 INSPECTION OF Base ~ Surface_Boundary -> Lines;
 =
 ATTRIBUTE
 Geometry := Base -> Geometry;
 LineAttr := Base -> LineAttrs;
 END Surface_Boundary2;

 GRAPHIC SurfaceBoundary_Graphics
 BASED ON Surface_Boundary2 =

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 113

 Boundary OF StandardSymbology.StandardSigns.PolylineSign: (
 Sign := {continuous};
 Geometry := Geometry;
 Priority := 101);

 END SurfaceBoundary_Graphics;

 GRAPHIC Polyline_Graphics
 BASED ON RoadsExdm2ien.RoadsExtended.StreetAxis =

 Street_precise OF StandardSymbology.StandardSigns.PolylineSign:
 WHERE Precision == #precise (
 Sign := {continuous};
 Geometry := Geometry;
 Priority := 110);

 Street_unprecise OF StandardSymbology.StandardSigns.PolylineSign:
 WHERE Precision == #unprecise (
 Sign := {dotted};
 Geometry := Geometry;
 Priority := 110);

 END Polyline_Graphics;

 GRAPHIC Text_Graphics
 BASED ON RoadsExdm2ien.RoadsExtended.StreetNamePosition =

 StreetName OF StandardSymbology.StandardSigns.TextSign: (
 Sign := {Linefont_18};
 Txt := Street -> Name;
 Geometry := NamPos;
 Rotation := NamOri;
 Priority := 120);

 END Text_Graphics;

 GRAPHIC Point_Graphics
 BASED ON RoadsExdm2ien.RoadsExtended.RoadSign =

 Tree OF StandardSymbology.StandardSigns.SymbolSign:
 WHERE Type == #prohibition.noparking (
 Sign := {NoParking};
 Geometry := Position;
 Priority := 130);

 GP OF StandardSymbology.StandardSigns.SymbolSign:
 WHERE Type == #danger (
 Sign := {GP};
 Geometry := Position;
 Priority := 130);

 END Point_Graphics;

 END Graphics;

END RoadsExgm2ien.

The graphic model RoadsExgm2ien has recourse to the symbols in the symbol library Roads-
Exgm2ien_Symbols (file RoadsExgm2ien_Symbols.xml). A description of the symbol library is to be found
in the following paragraph.

Symbol library RoadsExgm2ien_Symbols.xml

Hereafter the symbol library RoadsExgm2ien_Symbols is represented in the form of an XML-data set (file
RoadsExgm2ien_Symbols.xml). The symbol library contains symbol definitions for control points and

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 114

trees, as well as line, text and surface symbols. The corresponding symbology model
(StandardSymbology) is to be found in appendix J Symbology models.

<?xml version="1.0" encoding="UTF-8"?>

<!-- File RoadsExgm2ien_Symbols.xml 2005-06-16 (http://www.interlis.ch/models) -->

<TRANSFER xmlns="http://www.interlis.ch/INTERLIS2.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.interlis.ch/INTERLIS2.3
 RoadsExgm2ien_Symbols.xsd">
 <HEADERSECTION VERSION="2.3" SENDER="KOGIS">
 <MODELS>
 <MODEL NAME="RoadsExdm2ben" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 <MODEL NAME="RoadsExdm2ien" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 <MODEL NAME="AbstractSymbology" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 <MODEL NAME="StandardSymbology" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 <MODEL NAME="RoadsExgm2ien" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 </MODELS>

 <ALIAS>
 <ENTRIES FOR="RoadsExdm2ben">
 <TAGENTRY FROM="RoadsExdm2ben.Roads"
 TO="RoadsExdm2ben.Roads"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended"
 TO="RoadsExdm2ben.Roads"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.LAttrs"
 TO="RoadsExdm2ben.Roads.LAttrs"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.LandCover"
 TO="RoadsExdm2ben.Roads.LandCover"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.Street"
 TO="RoadsExdm2ben.Roads.Street"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetAxis"
 TO="RoadsExdm2ben.Roads.StreetAxis"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.StreetAxis"
 TO="RoadsExdm2ben.Roads.StreetAxis"/>
 <DELENTRY TAG="RoadsExdm2ien.RoadsExtended.StreetAxis"
 ATTR="Precision"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetAxisAssoc"
 TO="RoadsExdm2ben.Roads.StreetAxisAssoc"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetNamePosition"
 TO="RoadsExdm2ben.Roads.StreetNamePosition"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.StreetNamePositionAssoc"
 TO="RoadsExdm2ben.Roads.StreetNamePositionAssoc"/>
 <TAGENTRY FROM="RoadsExdm2ben.Roads.RoadSign"
 TO="RoadsExdm2ben.Roads.RoadSign"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.RoadSign"
 TO="RoadsExdm2ben.Roads.RoadSign"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LAttrs" ATTR="LArt"
 FROM="welldefined" TO="welldefined"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LAttrs" ATTR="LArt"
 FROM="fuzzy" TO="fuzzy"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="building" TO="building"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="street" TO="street"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="water" TO="water"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.LandCover" ATTR="Type"
 FROM="other" TO="other"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"
 FROM="prohibition" TO="prohibition"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 115

 FROM="indication" TO="indication"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"
 FROM="danger" TO="danger"/>
 <VALENTRY TAG="RoadsExdm2ben.Roads.RoadSign" ATTR="Type"
 FROM="velocity" TO="velocity"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noentry" TO="prohibition"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noparking" TO="prohibition"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.other" TO="prohibition"/>
 </ENTRIES>

 <ENTRIES FOR="RoadsExdm2ien">
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended"
 TO="RoadsExdm2ien.RoadsExtended"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.StreetAxis"
 TO="RoadsExdm2ien.RoadsExtended.StreetAxis"/>
 <TAGENTRY FROM="RoadsExdm2ien.RoadsExtended.RoadSign"
 TO="RoadsExdm2ien.RoadsExtended.RoadSign"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noentry" TO="prohibition.noentry"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.noparking" TO="prohibition.noparking"/>
 <VALENTRY TAG="RoadsExdm2ien.RoadsExtended.RoadSign" ATTR="Type"
 FROM="prohibition.other" TO="prohibition.other"/>
 </ENTRIES>

 <ENTRIES FOR="AbstractSymbology">
 <TAGENTRY FROM="AbstractSymbology.Signs"
 TO="AbstractSymbology.Signs"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns"
 TO="AbstractSymbology.Signs"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.Color"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.PolylineAttrs"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.FontSymbol_Polyline"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.FontSymbol_Surface"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.FontSymbol"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.Font"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.FontAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.LineStyle_Solid"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.LineStyle_SolidColorAssoc"/>
 <DELENTRY TAG=
 "StandardSymbology.StandardSigns.LineStyle_SolidPolylineAttrsAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.DashRec"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.LineStyle_Dashed"/>
 <DELENTRY TAG=
 "StandardSymbology.StandardSigns.LineStyle_DashedColorAssoc"/>
 <DELENTRY TAG=
 "StandardSymbology.StandardSigns.LineStyle_DashedLineAttrsAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.Pattern_Symbol"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.LineStyle_Pattern"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.TextSign"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.TextSignFontAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.TextSignColorAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.TextSignClipFontAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SymbolSign"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SymbolSignSymbolAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SymbolSignClipSymbolAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SymbolSignColorAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.PolylineSign"/>
 <DELENTRY TAG=
 "StandardSymbology.StandardSigns.PolylineSignLineStyleAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.PolylineSignColorAssoc"/>
 <DELENTRY TAG=
 "StandardSymbology.StandardSigns.PolylineSignClipStyleAssoc"/>
 <DELENTRY TAG=
 "StandardSymbology.StandardSigns.PolylineSignStartSymbolAssoc"/>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 116

 <DELENTRY TAG=
 "StandardSymbology.StandardSigns.PolylineSignEndSymbolAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SurfaceSign"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SurfaceSignColorAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SurfaceSignBorderAssoc"/>
 <DELENTRY TAG="StandardSymbology.StandardSigns.SurfaceSignHatchSymbAssoc"/>
 </ENTRIES>

 <ENTRIES FOR="StandardSymbology">
 <TAGENTRY FROM="StandardSymbology.StandardSigns"
 TO="StandardSymbology.StandardSigns"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.Color"
 TO="StandardSymbology.StandardSigns.Color"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.PolylineAttrs"
 TO="StandardSymbology.StandardSigns.PolylineAttrs"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.FontSymbol_Polyline"
 TO="StandardSymbology.StandardSigns.FontSymbol_Polyline"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.FontSymbol_Surface"
 TO="StandardSymbology.StandardSigns.FontSymbol_Surface"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.FontSymbol"
 TO="StandardSymbology.StandardSigns.FontSymbol"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.Font"
 TO="StandardSymbology.StandardSigns.Font"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.FontAssoc"
 TO="StandardSymbology.StandardSigns.FontAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.LineStyle_Solid"
 TO="StandardSymbology.StandardSigns.LineStyle_Solid"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.LineStyle_SolidColorAssoc"
 TO="StandardSymbology.StandardSigns.LineStyle_SolidColorAssoc"/>
 <TAGENTRY FROM=
 "StandardSymbology.StandardSigns.LineStyle_SolidPolylineAttrsAssoc"
 TO=
 "StandardSymbology.StandardSigns.LineStyle_SolidPolylineAttrsAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.DashRec"
 TO="StandardSymbology.StandardSigns.DashRec"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.LineStyle_Dashed"
 TO="StandardSymbology.StandardSigns.LineStyle_Dashed"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.LineStyle_DashedColorAssoc"
 TO="StandardSymbology.StandardSigns.LineStyle_DashedColorAssoc"/>
 <TAGENTRY FROM=
 "StandardSymbology.StandardSigns.LineStyle_DashedLineAttrsAssoc"
 TO=
 "StandardSymbology.StandardSigns.LineStyle_DashedLineAttrsAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.Pattern_Symbol"
 TO="StandardSymbology.StandardSigns.Pattern_Symbol"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.LineStyle_Pattern"
 TO="StandardSymbology.StandardSigns.LineStyle_Pattern"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.TextSign"
 TO="StandardSymbology.StandardSigns.TextSign"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.TextSignFontAssoc"
 TO="StandardSymbology.StandardSigns.TextSignFontAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.TextSignColorAssoc"
 TO="StandardSymbology.StandardSigns.TextSignColorAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.TextSignClipFontAssoc"
 TO="StandardSymbology.StandardSigns.TextSignClipFontAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SymbolSign"
 TO="StandardSymbology.StandardSigns.SymbolSign"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SymbolSignSymbolAssoc"
 TO="StandardSymbology.StandardSigns.SymbolSignSymbolAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SymbolSignClipSymbolAssoc"
 TO="StandardSymbology.StandardSigns.SymbolSignClipSymbolAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SymbolSignColorAssoc"
 TO="StandardSymbology.StandardSigns.SymbolSignColorAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.PolylineSign"
 TO="StandardSymbology.StandardSigns.PolylineSign"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.PolylineSignLineStyleAssoc"
 TO="StandardSymbology.StandardSigns.PolylineSignLineStyleAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.PolylineSignColorAssoc"

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 117

 TO="StandardSymbology.StandardSigns.PolylineSignColorAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.PolylineSignClipStyleAssoc"
 TO="StandardSymbology.StandardSigns.PolylineSignClipStyleAssoc"/>
 <TAGENTRY FROM=
 "StandardSymbology.StandardSigns.PolylineSignStartSymbolAssoc"
 TO=
 "StandardSymbology.StandardSigns.PolylineSignStartSymbolAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.PolylineSignEndSymbolAssoc"
 TO="StandardSymbology.StandardSigns.PolylineSignEndSymbolAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SurfaceSign"
 TO="StandardSymbology.StandardSigns.SurfaceSign"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SurfaceSignColorAssoc"
 TO="StandardSymbology.StandardSigns.SurfaceSignColorAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SurfaceSignBorderAssoc"
 TO="StandardSymbology.StandardSigns.SurfaceSignBorderAssoc"/>
 <TAGENTRY FROM="StandardSymbology.StandardSigns.SurfaceSignHatchSymbAssoc"
 TO="StandardSymbology.StandardSigns.SurfaceSignHatchSymbAssoc"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.PolylineAttrs" ATTR="Join"
 FROM="bevel" TO="bevel"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.PolylineAttrs" ATTR="Join"
 FROM="round" TO="round"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.PolylineAttrs" ATTR="Join"
 FROM="miter" TO="miter"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.PolylineAttrs" ATTR="Caps"
 FROM="round" TO="round"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.PolylineAttrs" ATTR="Caps"
 FROM="butt" TO="butt"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.Font" ATTR="Type"
 FROM="symbol" TO="symbol"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.Font" ATTR="Type"
 FROM="text" TO="text"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.SurfaceSign" ATTR="Clip"
 FROM="inside" TO="inside"/>
 <VALENTRY TAG="StandardSymbology.StandardSigns.SurfaceSign" ATTR="Clip"
 FROM="outside" TO="outside"/>
 </ENTRIES>

 <ENTRIES FOR="RoadsExgm2ien">
 <TAGENTRY FROM="RoadsExgm2ien.Graphics"
 TO="RoadsExgm2ien.Graphics"/>
 </ENTRIES>
 </ALIAS>

 <COMMENT>
 example symbology dataset ili2 refmanual appendix C
 </COMMENT>
 </HEADERSECTION>

 <DATASECTION>
 <StandardSymbology.StandardSigns BID="REFHANDB00000002">

 <!-- Color Library -->
 <StandardSymbology.StandardSigns.Color TID="1">
 <Name>red</Name>
 <L>40.0</L>
 <C>70.0</C>
 <H>0.0</H>
 <T>1.0</T>
 </StandardSymbology.StandardSigns.Color>

 <StandardSymbology.StandardSigns.Color TID="2">
 <Name>green</Name>
 <L>49.4</L>
 <C>48.5</C>
 <H>153.36</H>
 <T>1.0</T>
 </StandardSymbology.StandardSigns.Color>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 118

 <StandardSymbology.StandardSigns.Color TID="3">
 <Name>light_gray</Name>
 <L>75.0</L>
 <C>0.0</C>
 <H>0.0</H>
 <T>1.0</T>
 </StandardSymbology.StandardSigns.Color>

 <StandardSymbology.StandardSigns.Color TID="4">
 <Name>dark_grey</Name>
 <L>25.0</L>
 <C>0.0</C>
 <H>0.0</H>
 <T>1.0</T>
 </StandardSymbology.StandardSigns.Color>

 <StandardSymbology.StandardSigns.Color TID="5">
 <Name>dark_blue</Name>
 <L>50.3</L>
 <C>43.5</C>
 <H>261.1</H>
 <T>1.0</T>
 </StandardSymbology.StandardSigns.Color>

 <StandardSymbology.StandardSigns.Color TID="6">
 <Name>black</Name>
 <L>0.0</L>
 <C>0.0</C>
 <H>0.0</H>
 <T>1.0</T>
 </StandardSymbology.StandardSigns.Color>

 <StandardSymbology.StandardSigns.Color TID="7">
 <Name>white</Name>
 <L>100.0</L>
 <C>0.0</C>
 <H>0.0</H>
 <T>1.0</T>
 </StandardSymbology.StandardSigns.Color>

 <StandardSymbology.StandardSigns.PolylineAttrs TID="4001">
 <Width>0.01</Width>
 <Join>round</Join>
 <Caps>butt</Caps>
 </StandardSymbology.StandardSigns.PolylineAttrs>

 <StandardSymbology.StandardSigns.PolylineAttrs TID="4002">
 <Width>0.01</Width>
 <Join>miter</Join>
 <MiterLimit>2.0</MiterLimit>
 <Caps>butt</Caps>
 </StandardSymbology.StandardSigns.PolylineAttrs>

 <!-- Font/Symbol Library -->
 <StandardSymbology.StandardSigns.FontSymbol TID="101">
 <Name>Triangle</Name>
 <Geometry>
 <StandardSymbology.StandardSigns.FontSymbol_Surface>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <COORD><C1>-0.5</C1><C2>-0.5</C2></COORD>
 <COORD><C1>0.0</C1><C2>0.5</C2></COORD>
 <COORD><C1>0.5</C1><C2>-0.5</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 119

 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Surface>
 <StandardSymbology.StandardSigns.FontSymbol_Polyline>
 <Color REF="6"></Color>
 <LineAttrs REF="4001"></LineAttrs>
 <Geometry>
 <POLYLINE>
 <COORD><C1>-0.5</C1><C2>0.0</C2></COORD>
 <ARC><C1>0.5</C1><C2>0.0</C2>
 <A1>0.0</A1><A2>0.5</A2><R>0.5</R>
 </ARC>
 <ARC><C1>-0.5</C1><C2>0.0</C2>
 <A1>0.0</A1><A2>-0.5</A2><R>0.5</R>
 </ARC>
 </POLYLINE>
 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Polyline>
 </Geometry>

 </StandardSymbology.StandardSigns.FontSymbol>

 <StandardSymbology.StandardSigns.FontSymbol TID="102">
 <Name>NoParking</Name>
 <Geometry>
 <StandardSymbology.StandardSigns.FontSymbol_Polyline>
 <Color REF="6"></Color>
 <LineAttrs REF="4001"></LineAttrs>
 <Geometry>
 <POLYLINE>
 <COORD><C1>-0.5</C1><C2>0.0</C2></COORD>
 <ARC><C1>0.5</C1><C2>0.0</C2>
 <A1>0.0</A1><A2>0.5</A2><R>0.5</R>
 </ARC>
 <ARC><C1>-0.5</C1><C2>0.0</C2>
 <A1>0.0</A1><A2>-0.5</A2><R>0.5</R>
 </ARC>
 </POLYLINE>
 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Polyline>
 <StandardSymbology.StandardSigns.FontSymbol_Surface>
 <FillColor REF="1"></FillColor>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <COORD><C1>-0.233</C1><C2>0.325</C2></COORD>
 <ARC><C1>0.325</C1><C2>-0.233</C2>
 <A1>0.283</A1><A2>0.283</A2><R>0.4</R>
 </ARC>
 <COORD><C1>-0.233</C1><C2>0.325</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Surface>
 <StandardSymbology.StandardSigns.FontSymbol_Surface>
 <FillColor REF="1"></FillColor>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <COORD><C1>0.228</C1><C2>-0.324</C2></COORD>
 <ARC><C1>-0.327</C1><C2>0.238</C2>
 <A1>-0.283</A1><A2>-0.283</A2><R>0.4</R>
 </ARC>
 <COORD><C1>0.228</C1><C2>-0.324</C2></COORD>
 </POLYLINE>
 </BOUNDARY>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 120

 </SURFACE>
 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Surface>
 <StandardSymbology.StandardSigns.FontSymbol_Surface>
 <FillColor REF="5"></FillColor>
 <Geometry>
 <SURFACE>
 <BOUNDARY>
 <POLYLINE>
 <COORD><C1>-0.5</C1><C2>0.0</C2></COORD>
 <ARC><C1>0.5</C1><C2>0.0</C2>
 <A1>0.0</A1><A2>0.5</A2><R>0.5</R>
 </ARC>
 <ARC><C1>-0.5</C1><C2>0.0</C2>
 <A1>0.0</A1><A2>-0.5</A2><R>0.5</R>
 </ARC>
 </POLYLINE>
 </BOUNDARY>
 <BOUNDARY>
 <POLYLINE>
 <COORD><C1>-0.233</C1><C2>0.325</C2></COORD>
 <ARC><C1>0.325</C1><C2>-0.233</C2>
 <A1>0.283</A1><A2>0.283</A2><R>0.4</R>
 </ARC>
 <COORD><C1>-0.233</C1><C2>0.325</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 <BOUNDARY>
 <POLYLINE>
 <COORD><C1>0.228</C1><C2>-0.324</C2></COORD>
 <ARC><C1>-0.327</C1><C2>0.238</C2>
 <A1>-0.283</A1><A2>-0.283</A2><R>0.4</R>
 </ARC>
 <COORD><C1>0.228</C1><C2>-0.324</C2></COORD>
 </POLYLINE>
 </BOUNDARY>
 </SURFACE>
 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Surface>
 <StandardSymbology.StandardSigns.FontSymbol_Polyline>
 <Color REF="7"></Color>
 <LineAttrs REF="4001"></LineAttrs>
 <Geometry>
 <POLYLINE>
 <COORD><C1>-0.233</C1><C2>0.325</C2></COORD>
 <ARC><C1>0.325</C1><C2>-0.233</C2>
 <A1>0.283</A1><A2>0.283</A2><R>0.4</R>
 </ARC>
 <COORD><C1>-0.233</C1><C2>0.325</C2></COORD>
 </POLYLINE>
 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Polyline>
 <StandardSymbology.StandardSigns.FontSymbol_Polyline>
 <Color REF="7"></Color>
 <LineAttrs REF="4001"></LineAttrs>
 <Geometry>
 <POLYLINE>
 <COORD><C1>0.228</C1><C2>-0.324</C2></COORD>
 <ARC><C1>-0.327</C1><C2>0.238</C2>
 <A1>-0.283</A1><A2>-0.283</A2><R>0.4</R>
 </ARC>
 <COORD><C1>0.228</C1><C2>-0.324</C2></COORD>
 </POLYLINE>
 </Geometry>
 </StandardSymbology.StandardSigns.FontSymbol_Polyline>
 </Geometry>

 </StandardSymbology.StandardSigns.FontSymbol>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 121

 <!-- Internal Symbol Font "Symbols" -->
 <StandardSymbology.StandardSigns.Font TID="10">
 <Name>Symbols</Name>
 <Internal>true</Internal>
 <Type>symbol</Type>
 </StandardSymbology.StandardSigns.Font>

 <!-- External Text Font "Leroy" -->
 <StandardSymbology.StandardSigns.Font TID="11">
 <Name>Leroy</Name>
 <Internal>false</Internal>
 <Type>text</Type>
 <BottomBase>0.3</BottomBase>
 </StandardSymbology.StandardSigns.Font>

 <!-- LineStyles -->
 <StandardSymbology.StandardSigns.LineStyle_Solid TID="21">
 <Name>LineSolid_01</Name>
 <Color REF="6"></Color>
 <LineAttrs REF="4001"></LineAttrs>
 </StandardSymbology.StandardSigns.LineStyle_Solid>

 <StandardSymbology.StandardSigns.LineStyle_Dashed TID="22">
 <Name>LineDashed_01</Name>
 <Dashes>
 <StandardSymbology.StandardSigns.DashRec>
 <DLength>0.1</DLength>
 </StandardSymbology.StandardSigns.DashRec>
 <StandardSymbology.StandardSigns.DashRec>
 <DLength>0.1</DLength>
 </StandardSymbology.StandardSigns.DashRec>
 </Dashes>
 <Color REF="6"></Color>
 <LineAttrs REF="4002"></LineAttrs>
 </StandardSymbology.StandardSigns.LineStyle_Dashed>

 <!-- Text Signs -->
 <StandardSymbology.StandardSigns.TextSign TID="1001">
 <Name>Linefont_18</Name>
 <Height>1.8</Height>

 </StandardSymbology.StandardSigns.TextSign>

 <!-- Symbol Signs -->
 <StandardSymbology.StandardSigns.SymbolSign TID="2001">
 <Name>GP</Name>
 <Scale>1.0</Scale>
 <Color REF="2"></Color>
 <Symbol REF="101"></Symbol>
 </StandardSymbology.StandardSigns.SymbolSign>

 <StandardSymbology.StandardSigns.SymbolSign TID="2002">
 <Name>NoParking</Name>
 <Scale>1.0</Scale>
 <Symbol REF="102"></Symbol>
 </StandardSymbology.StandardSigns.SymbolSign>

 <!-- Polyline Signs -->
 <StandardSymbology.StandardSigns.PolylineSign TID="3001">
 <Name>continuous</Name>
 <Style REF="21">
 <StandardSymbology.StandardSigns.PolylineSignLineStyleAssoc>
 <Offset>0.0</Offset>
 </StandardSymbology.StandardSigns.PolylineSignLineStyleAssoc>
 </Style>
 </StandardSymbology.StandardSigns.PolylineSign>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 122

 <StandardSymbology.StandardSigns.PolylineSign TID="3002">
 <Name>dotted</Name>
 <Style REF="22">
 <StandardSymbology.StandardSigns.PolylineSignLineStyleAssoc>
 <Offset>0.0</Offset>
 </StandardSymbology.StandardSigns.PolylineSignLineStyleAssoc>
 </Style>
 </StandardSymbology.StandardSigns.PolylineSign>

 <!-- Surface Signs -->
 <StandardSymbology.StandardSigns.SurfaceSign TID="5001">
 <Name>Building</Name>
 <FillColor REF="4"></FillColor>
 </StandardSymbology.StandardSigns.SurfaceSign>

 <StandardSymbology.StandardSigns.SurfaceSign TID="5002">
 <Name>Street</Name>
 <FillColor REF="3"></FillColor>
 </StandardSymbology.StandardSigns.SurfaceSign>

 <StandardSymbology.StandardSigns.SurfaceSign TID="5003">
 <Name>Water</Name>
 <FillColor REF="5"></FillColor>
 </StandardSymbology.StandardSigns.SurfaceSign>

 <StandardSymbology.StandardSigns.SurfaceSign TID="5005">
 <Name>Other</Name>
 <FillColor REF="2"></FillColor>
 </StandardSymbology.StandardSigns.SurfaceSign>
 </StandardSymbology.StandardSigns>
 <!-- end of basket REFHANDB00000002 -->
 </DATASECTION>
</TRANSFER>

Graphic representation of our example

Combining information provided by the data set RoadsExdm2ien (file RoadsExdm2ien.xml), the
descriptions in the graphic model RoadsExgm2ien (file RoadsExgm2ien.ili) and the symbol library
RoadsExgm2ien_Symbols (file RoadsExgm2ien_Symbols.xml), an INTERLIS 2-graphic processor will
generate the following graphic:

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix C Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 123

Figure 27: Graphic generated from graphic and data descriptions.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix D Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 124

Appendix D (standard extension suggestion)
Organization of object identifiers (OID)

Preliminary note

The following specification is not a normative component of INTERLIS. This is a standard extension
suggestion based upon the INTERLIS Version 2-Reference Manual in the sense of a recommendation.
However we intend to put it up for discussion and possibly convert it into a more definite regulation.
Consult the corresponding INTERLIS 2-user manuals for examples of application.

Introduction

Steadily increasing availability of geodata in turn demands its updating and integration in various data-
bases. These are some of the reasons why there is a demand for uniform regulations concerning object
identifyers (OID): An OID will identify an object instance from its beginning to its end, even if attribute
values should alter. In contrast to user keys (cf. appendix E Uniqueness of user keys in the INTERLIS 2-
Reference Manual) the user has to consider an OID as a non-talking ("opaque") attribute which typically
will be administered by system functions.

At least within one transfer community an OID must be unique, unequivocal and unchangeable.

Amongst others, the following demands are made on the generation and the utilization of OID's:

• The OID is a general and stable identifier, even with extensive quantities of data. As an identifier it
is an attribute whose value unequivocally designates an object in its class. Being a general
identifier its value not only clearly designates an object within its class but within all classes of a
transfer community. Furthermore being a stable identifier it is independent of time, i.e. during the
life-cycle of an object it cannot be modified and the OID of any deleted object no longer can be
used.

• Independent of hardware and software producers.

• Independent of platforms.
• Serviceable for multiple as well as individual users, resp. in autonomous systems (e.g. in field

work).
• Little space required and if need be still further to be optimized.
• Easy to implement.

Other possible demands are not necessarily of technical nature, e.g. a minimum of expenditure in
organization, under national control, also utilizable with older systems and approval of system providers.
These are high demands which partially point to opposite directions. A special requirement states that an
OID can be placed at least 10 million times by a producing system; furthermore that the OID has a set
length in order to facilitate its manipulation (thus excluding other well-known procedures, such as a so-
called URI as a prefix). There is no call for control numbers, it is assumed that lower communication
levels provide the necessary tools.

On principle, the uniqueness of an OID will always be achieved through a central mechanism. The two
extremes, i.e. placing of each OID through a central authority on the one hand, and the completely
decentral and autonomous generating of OID's on the other, lead to unsatisfying results. An OID places
via an MAC address of a network adapter and a time stamp for example is neither deemed pr acticable
nor very promising, since it would mean that each computer be equipped with a MAC and it is not to be
foreseen if this technology will not be outdated within the next few years.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix D Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 125

There is a long history to the development of this specification. Over the years we have conducted
studies, conferences and reviews. Some of the documents established in its course is available to
interested parties (place your order with www.interlis.ch, resp. info@interlis.ch).

Structure of an object identifier (OID)

An object identifier (OID) consists of a prefix and a post fix and has got a set length of 16 alphanumerical
characters. An OID is always treated as a unity, above all on the data interface and where the user is
concerned. The OID domain STANDARDOID of the INTERLIS model corresponds precisely to this
definition. However it only defines its entire length and not its detailed structure.

OIDDef = Prefix Postfix.

Prefix

A central authority generates the prefix. Thus uniqueness is guaranteed within a t ransfer community.
Typically every basket (i.e. a database process, which administers data of a concrete topic) demands a
new prefix. It is the country of the prefix-creating process that is considered to be the destination of the
prefix. This process is not automatically in the same place as the producing system that creates the entire
OID.

A prefix consists of 8 characters, the following symbols being admissible:

Prefix = Letter { Letter | Digit }. !! sequence of 8 characters
Letter = ('A' | .. | 'Z' | 'a' | .. | 'z').
Digit = ('0' | '1' | .. | '9').

A prefix is defined as a sequence of letters and digits, the first symbol having to be a letter (c f. also
structure of XML-tag names or chapter Names in the INTERLIS Version 2-Reference Manual).

Moreover, the first two prefix characters have to be determined according to the country codes of ISO-
Norm 3166. Thus the letters "ch" have been selected for all prefixes created in Switzerland, "de" for
Germany, "at" for Austria etc. Thus for the creation of a prefix 62 different varieties are available per
character (0..9: ASCII 48 to 57; A..Z: ASCII 65 to 90; a..z: ASCII 97 to 122). The combining of 62 symbols
with the number of 10 characters results in a number that exceeds the probable exigencies of most of the
applications at present conceivable.

Postfix

A postfix is created by the data-producer, resp. the producing system itself. It consists of 8 characters, Its
ASCII-compatible; column-oriented approach demands that possible "void" characters on the left be filled
with noughts ("0") (see example 1 and 3 of an OID below). Thus the smallest possible ordinal value of the
postfix part is depicted as "00000000".

Postfix = { Letter | Digit }. !! sequence of 8 characters

If need be further restrictions in the prefix or postfix part can be defined in additional specifications.

Summary and application examples

OID Length Significance Notes
Prefix 2 + 6

Char.
Country specif ication + a unique ‚global'
identif ication-part assigned by a central
authority.

Worldw ide unequivocal country specif ication e.g.
de (Germany), at (Austria), ch (Sw itzerland)
according to ISO-norm 3166. Further restrictions
require additional specif ications.

Postf ix 8 Char. Sequence (numeric or alphanumeric) of Further restrictions such as e.g. date stamp w ith

http://www.interlis.ch/
mailto:info@interlis.ch
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix D Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 126

OID Length Significance Notes
the producing system as a 'local'
identif ications-part

sequence number require additional
specif ications.

Examples

1234567812345678 Comment
---------------- -------

A000000000000000 Theoretically the smallest possible OID

zwzzzzzzzzzzzzzz The maximum possible OID with zw for Zimbabwe

deg5mQXX2000004a OID of German origin (de) selected at random

chgAAAAAAAAA0azD OID of Swiss origin (ch) selected at random

Organization

Some authority (possibly federal), universally acknowledged by the transfer community, maintains a
central service charged with the generation of OID's. Via appropriate communication channels data -
producers may obtain one or several prefixes. This might be for example an Internet-page connected with
an e-mail service. Such a service can be made relatively secure and safeguarded against abuse.

It is up to the implementation of the source and target system to utilize the characteristics explicitly stated
in this specification and to use an OID appropriately, e.g. for sorting or internal optimizing. Administering
the prefix part within the system at a central locality may attain such optimizing; furthermore the different
objects would only contain the postfix part and in addition relate to a common prefix part. Other
economies may result if the postfix part is memorized system internally as a binary number.

For practice exercises use:

• The OID-prefix "chB00000" with OID's for baskets.

• The OID-prefix "ch100000" with all other OID's.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix E Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 127

Appendix E (standard extension suggestion)
Uniqueness of user keys

Note

The following specification is not a normative component of INTERLIS. This is a standard extension
suggestion based upon the INTERLIS Version 2-Reference Manual in the sense of a recommendation.
However we intend to put it up for discussion and possibly convert it into a more definite regulation.
Consult the corresponding INTERLIS 2-user manuals for examples of application.

Modeling alternatives

If uniqueness is a requirement in user keys, the question arises within which limits this uniqueness
applies. From a purely technical point of view it is often obvious, that uniqueness can only be guaranteed
within one specific basket, since all other baskets are not accessible. From a modeling point of view
however, a basket is meaningless as long as no statement concerning its extent can be made.

It is doubt ful whether uniqueness even is of necessity in a base model. As seen by a superior authority
(e.g. Federation) it is quite conceivable that uniqueness is not the rule for all, but only for the internal
(federate) data model.

Hereafter we present two possible ways of dealing with the problem of unique user keys:

• Variety central regulation.
• Variety decentralist regulation (delegation principle).

Variant Central regulation

Without further reflection, a central regulation would probably be in the foreground. A central authority
determines for all objects of one class that a certain user key has to be unique within the entire area. This
may be achieved by taking certain organizational steps, or all parties concerned may have access to a
central database.

TOPIC Property =

 CLASS Allotment =
 Number: 1 .. 99999;
 Geometry: AREA WITH (STRAIGHTS, ARCS) VERTEX CHCoord
 WITHOUT OVERLAPS > 0.005;
 UNIQUE
 Number;
 END Allotment;

END Property.

Often the central authority will determine a tessellation and hence unique area numbers within the entire
area. If allotments, which in turn are situated within these areas, should be unique in all respects, then the
user key must necessarily consist of a combination of both area number and allotment number:

 CLASS Allotment =
 Area_Number: 1 .. 9999;
 Number: 1 .. 99999;
 Geometry: AREA WITH (STRAIGHTS, ARCS) VERTEX CHCoord
 WITHOUT OVERLAPS > 0.005;
 UNIQUE
 Area_Number, Number; !! User key
 END Allotment;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix E Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 128

Variant Decentralist Regulation (Delegation Principle)

If the necessary data structures have been set in a data model, it is possible to comprehend objects
primarily in smaller baskets (e.g. one basket per county), which further along can be collected without any
problems in bigger baskets (e.g. one for a whole canton). Supposing furthermore, that the federal
authority demands allotment numbers with five digits, without determining the limits where uniqueness is
required, and presuming at the same time that a canton requires uniqueness within the limits of one
county, then the following modeling is possible:

MODEL Federation (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 DOMAIN
 CHCoord = COORD
 0.000 .. 200.000 [INTERLIS.m], !! Min_East Max_East
 0.000 .. 200.000 [INTERLIS.m], !! Min_North Max_North
 ROTATION 2 -> 1;

 TOPIC Property =

 CLASS Allotment =
 Number: 1..99999;
 Geometry: AREA WITH (STRAIGHTS, ARCS) VERTEX CHCoord
 WITHOUT OVERLAPS > 0.005;
 END Allotment;

 END Property;

END Federation.

MODEL CantonA (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS Federation;

 TOPIC OrgStructure =

 CLASS County =
 Name: TEXT*30;
 UNIQUE
 Name;
 END County;

 END OrgStructure;

 TOPIC Property EXTENDS Federation.Property =
 DEPENDS ON OrgStruktur;

 ASSOCIATION CountyAllotment =
 County (EXTERNAL) -- {1} CantonA.OrgStruktur.County;
 Allotment –- Allotment;
 END CountyAllotment;

 CONSTRAINTS OF Allotment =
 UNIQUE
 Number, County;
 END;

 END Property;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix E Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 129

END CantonA.

According to definition, the names of counties must be unique within the scope of all objects of one class.
It is irrelevant whether the observance of this requirement can be checked in view of their distribution into
concrete baskets. Nevertheless this requirement prevails.

In order to determine uniqueness of the allotment number within a county, a relationship is established
between allotment and county and it is required, that the combination of county and number be unique.
Again it is irrelevant whether a basket comprises part of a county, a county as a whole or several
counties. From the view point of modeling the requirement prevails.

Proceeding on the assumption that a system contains the allotments of a certain county, it is quite
possible that system internally the relationship between county and allotments is omitted, only to be
enclosed when transferring data to other systems.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix F Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 130

Appendix F (standard extension suggestion)
Definition of units

Note

The following specification is not a normative component of INTERLIS. This is a standard extension
suggestion based upon the INTERLIS Version 2-Reference Manual in the sense of a recommendation.
However we intend to put it up for discussion and possibly convert it into a more definite regulation.
Consult the corresponding INTERLIS 2-user manuals for examples of application.

The type model

The following type model comprises the most common units. It extends units that have been directly
defined by INTERLIS (c f. appendix A The internal INTERLIS-data model).

!! File Units.ili Release 2005-06-16

INTERLIS 2.3;

CONTRACTED TYPE MODEL Units (en) AT "http://www.interlis.ch/models"
 VERSION "2005-06-06" =

 UNIT
 !! abstract Units
 Area (ABSTRACT) = (INTERLIS.LENGTH*INTERLIS.LENGTH);
 Volume (ABSTRACT) = (INTERLIS.LENGTH*INTERLIS.LENGTH*INTERLIS.LENGTH);
 Velocity (ABSTRACT) = (INTERLIS.LENGTH/INTERLIS.TIME);
 Acceleration (ABSTRACT) = (Velocity/INTERLIS.TIME);
 Force (ABSTRACT) = (INTERLIS.MASS*INTERLIS.LENGTH/INTERLIS.TIME/INTERLIS.TIME);
 Pressure (ABSTRACT) = (Force/Area);
 Energy (ABSTRACT) = (Force*INTERLIS.LENGTH);
 Power (ABSTRACT) = (Energy/INTERLIS.TIME);
 Electric_Potential (ABSTRACT) = (Power/INTERLIS.ELECTRIC_CURRENT);
 Frequency (ABSTRACT) = (INTERLIS.DIMENSIONLESS/INTERLIS.TIME);

 Millimeter [mm] = 0.001 [INTERLIS.m];
 Centimeter [cm] = 0.01 [INTERLIS.m];
 Decimeter [dm] = 0.1 [INTERLIS.m];
 Kilometer [km] = 1000 [INTERLIS.m];

 Square_Meter [m2] EXTENDS Area = (INTERLIS.m*INTERLIS.m);
 Cubic_Meter [m3] EXTENDS Volume = (INTERLIS.m*INTERLIS.m*INTERLIS.m);

 Minute [min] = 60 [INTERLIS.s];
 Hour [h] = 60 [min];
 Day [d] = 24 [h];

 Kilometer_per_Hour [kmh] EXTENDS Velocity = (km/h);
 Meter_per_Second [ms] = 3.6 [kmh];
 Newton [N] EXTENDS Force = (INTERLIS.kg*INTERLIS.m/INTERLIS.s/INTERLIS.s);
 Pascal [Pa] EXTENDS Pressure = (N/m2);
 Joule [J] EXTENDS Energy = (N*INTERLIS.m);
 Watt [W] EXTENDS Power = (J/INTERLIS.s);
 Volt [V] EXTENDS Electric_Potential = (W/INTERLIS.A);

 Inch [in] = 2.54 [cm];
 Foot [ft] = 0.3048 [INTERLIS.m];
 Mile [mi] = 1.609344 [km];

 Are [a] = 100 [m2];
 Hectare [ha] = 100 [a];

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix F Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 131

 Square_Kilometer [km2] = 100 [ha];
 Acre [acre] = 4046.873 [m2];

 Liter [L] = 1 / 1000 [m3];
 US_Gallon [USgal] = 3.785412 [L];

 Angle_Degree = 180 / PI [INTERLIS.rad];
 Angle_Minute = 1 / 60 [Angle_Degree];
 Angle_Second = 1 / 60 [Angle_Minute];

 Gon = 200 / PI [INTERLIS.rad];

 Gram [g] = 1 / 1000 [INTERLIS.kg];
 Ton [t] = 1000 [INTERLIS.kg];
 Pound [lb] = 0.4535924 [INTERLIS.kg];

 Calorie [cal] = 4.1868 [J];
 Kilowatt_Hour [kWh] = 0.36E7 [J];

 Horsepower = 746 [W];

 Techn_Atmosphere [at] = 98066.5 [Pa];
 Atmosphere [atm] = 101325 [Pa];
 Bar [bar] = 10000 [Pa];
 Millimeter_Mercury [mmHg] = 133.3224 [Pa];
 Torr = 133.3224 [Pa]; !! Torr = [mmHg]

 Decibel [dB] = FUNCTION // 10**(dB/20) * 0.00002 // [Pa];

 Degree_Celsius [oC] = FUNCTION // oC+273.15 // [INTERLIS.K];
 Degree_Fahrenheit [oF] = FUNCTION // (oF+459.67)/1.8 // [INTERLIS.K];

 CountedObjects EXTENDS INTERLIS.DIMENSIONLESS;

 Hertz [Hz] EXTENDS Frequency = (CountedObjects/INTERLIS.s);
 KiloHertz [KHz] = 1000 [Hz];
 MegaHertz [MHz] = 1000 [KHz];

 Percent = 0.01 [CountedObjects];
 Permille = 0.001 [CountedObjects];

 !! ISO 4217 Currency Abbreviation
 USDollar [USD] EXTENDS INTERLIS.MONEY;
 Euro [EUR] EXTENDS INTERLIS.MONEY;
 SwissFrancs [CHF] EXTENDS INTERLIS.MONEY;

END Units.

Examples

Cf. chapter Base units in the INTERLIS Version 2-Reference Manual.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix G Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 132

Appendix G (standard extension suggestion)
Time definitions

Note

The following specification is not a normative component of INTERLIS. This is a standard extension
suggestion based upon the INTERLIS Version 2-Reference Manual in the sense of a recommendation.
However we intend to put it up for discussion and possibly convert it into a more definite regulation.
Consult the corresponding INTERLIS 2-user manuals for examples of application.

The time model
!! File Time.ili Release 2005-06-16

INTERLIS 2.3;

CONTRACTED REFSYSTEM MODEL Time (en) AT "http://www.interlis.ch/models"
 VERSION "2005-06-16" =

 IMPORTS Units;

 STRUCTURE DayOfYear =
 Month: 1 .. 12 [INTERLIS.M];
 SUBDIVISION Day: 1..31 [INTERLIS.d];
 END DayOfYear;

 STRUCTURE HMDiffWithinDay =
 Hours: -23 .. 23 CIRCULAR [INTERLIS.h];
 CONTINUOUS SUBDIVISION Minutes: 0 .. 59 [INTERLIS.min];
 END HMDiffWithinDay;

 DOMAIN
 WeekDay = (WorkingDay (Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday),
 Sunday) CIRCULAR;

 HMDiffWDay = FORMAT BASED ON HMDiffWithinDay (Hours ":" Minutes);
 DifferenceToUTC EXTENDS HMDiffWDay = MANDATORY "-13:00" .. "13:00";
 !! UTC := LocTime + Diff

 FUNCTION AppropriateDate (dayOfYear: MANDATORY DayOfYear;
 weekDay: WeekDay): DayOfYear
 // returns first parameter if second is undefined,
 returns first day from (incl) first parameter being the
 requested weekday //;

 FUNCTION DSTOrdered (day1: DayOfYear; day2: DayOfYear) : BOOLEAN
 // returns TRUE if the second parameter comes after the
 first parameter or if both parameters are equal //;

 STRUCTURE DSTransition =
 TransitionDSTime: MANDATORY HMDiffWDay;
 FirstDate: MANDATORY DayOfYear;
 DayOfWeek: WeekDay;
 TransitionDate: DayOfYear := AppropriateDate (FirstDate, DayOfWeek);
 END DSTransition;

 STRUCTURE DaylightSavingPeriod =
 DSToUTC: DifferenceToUTC;
 From: MANDATORY INTERLIS.GregorianYear;
 To: MANDATORY INTERLIS.GregorianYear;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix G Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 133

 DSStart: MANDATORY DSTransition;
 DSEnd: MANDATORY DSTransition;
 MANDATORY CONSTRAINT
 DSTOrdered (DSStart, DSEnd);
 MANDATORY CONSTRAINT
 To >= From;
 END DaylightSavingPeriod;

 FUNCTION DSPOverlaps (periods: BAG {1..*} OF DaylightSavingPeriod) : BOOLEAN
 // returns TRUE if any one of the periods overlap //;

 TOPIC TimeZone =

 CLASS TimeZone (ABSTRACT) EXTENDS INTERLIS.SCALSYSTEM =
 PARAMETER
 Unit (EXTENDED): NUMERIC [INTERLIS.TIME];
 END TimeZone;

 CLASS BaseTimeZone EXTENDS INTERLIS.TIMESYSTEMS.TIMEOFDAYSYS =
 !! TimeZone without daylight saving
 DiffToUTC: DifferenceToUTC;
 END BaseTimeZone;

 CLASS DaylightSavingTZ EXTENDS INTERLIS.TIMESYSTEMS.TIMEOFDAYSYS =
 Periods: BAG {1..*} OF DaylightSavingPeriod;
 MANDATORY CONSTRAINT
 NOT (DSPOverlaps (Periods));
 END DaylightSavingTZ;

 ASSOCIATION DaylightSavingTZOf =
 BaseTZ -<> BaseTimeZone;
 DSTZ -- DaylightSavingTZ;
 END DaylightSavingTZOf;

 END TimeZone;

END Time.

Exemplary data for the time model

The following example corresponds to the time model above.
<?xml version="1.0" encoding="UTF-8"?>

<!-- File SwissTimeData.xml 2005-06-16 (http://www.interlis.ch/models) -->

<TRANSFER xmlns="http://www.interlis.ch/INTERLIS2.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.interlis.ch/INTERLIS2.3
 SwissTimeData.xsd">
 <HEADERSECTION VERSION="2.3" SENDER="KOGIS">
 <MODELS>
 <MODEL NAME="Units" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 <MODEL NAME="Time" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 </MODELS>

 <ALIAS>
 <ENTRIES FOR="Time">
 <TAGENTRY FROM="Time.DayOfYear" TO="Time.DayOfYear"/>
 <TAGENTRY FROM="Time.HMDiffWithinDay" TO="Time.HMDiffWithinDay"/>
 <TAGENTRY FROM="Time.DSTransition" TO="Time.DSTransition"/>
 <TAGENTRY FROM="Time.DaylightSavingPeriod" TO="Time.DaylightSavingPeriod"/>
 <TAGENTRY FROM="Time.TimeZone" TO="Time.TimeZone"/>
 <TAGENTRY FROM="Time.TimeZone.BaseTimeZone"
 TO="Time.TimeZone.BaseTimeZone"/>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix G Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 134

 <TAGENTRY FROM="Time.TimeZone.DaylightSavingTZ"
 TO="Time.TimeZone.DaylightSavingTZ"/>
 <TAGENTRY FROM="Time.TimeZone.DaylightSavingTZOf"
 TO="Time.TimeZone.DaylightSavingTZOf"/>
 </ENTRIES>
 </ALIAS>

 <COMMENT>
 example dataset ili2 refmanual appendix G
 </COMMENT>
 </HEADERSECTION>

 <DATASECTION>
 <Time.TimeZone BID="BTimeZones">
 <Time.TimeZone.BaseTimeZone TID="BTimeZones.MEZ">
 <Name>MEZ</Name>
 <DiffToUTC>-1:00</DiffToUTC>
 </Time.TimeZone.BaseTimeZone>

 <Time.TimeZone.DaylightSavingTZ TID="BTimeZones.MESZ">
 <Name>MESZ</Name>
 <Periods>
 <Time.DaylightSavingPeriod>
 <DSToUTC>-2:00</DSToUTC>
 <From>1983</From>
 <To>1995</To>
 <DSStart>
 <Time.DSTransition>
 <TransitionDSTime>3:00</TransitionDSTime>
 <FirstDate>
 <Time.DayOfYear>
 <Month>3</Month>
 <Day>25</Day>
 </Time.DayOfYear>
 </FirstDate>
 <DayOfWeek>Sunday</DayOfWeek>
 </Time.DSTransition>
 </DSStart>
 <DSEnd>
 <Time.DSTransition>
 <TransitionDSTime>3:00</TransitionDSTime>
 <FirstDate>
 <Time.DayOfYear>
 <Month>9</Month>
 <Day>24</Day>
 </Time.DayOfYear>
 </FirstDate>
 <DayOfWeek>Sunday</DayOfWeek>
 </Time.DSTransition>
 </DSEnd>
 </Time.DaylightSavingPeriod>
 <Time.DaylightSavingPeriod>
 <DSToUTC>-2:00</DSToUTC>
 <From>1996</From>
 <To>2999</To>
 <DSStart>
 <Time.DSTransition>
 <TransitionDSTime>3:00</TransitionDSTime>
 <FirstDate>
 <Time.DayOfYear>
 <Month>3</Month>
 <Day>25</Day>
 </Time.DayOfYear>
 </FirstDate>
 <DayOfWeek>Sunday</DayOfWeek>
 </Time.DSTransition>
 </DSStart>
 <DSEnd>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix G Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 135

 <Time.DSTransition>
 <TransitionDSTime>3:00</TransitionDSTime>
 <FirstDate>
 <Time.DayOfYear>
 <Month>10</Month>
 <Day>25</Day>
 </Time.DayOfYear>
 </FirstDate>
 <DayOfWeek>Sunday</DayOfWeek>
 </Time.DSTransition>
 </DSEnd>
 </Time.DaylightSavingPeriod>
 </Periods>
 </Time.TimeZone.DaylightSavingTZ>

 <Time.TimeZone.DaylightSavingTZOf TID="DaylightSavingTZOf">
 <BaseTZ REF="BTimeZones.MEZ"></BaseTZ>
 <DSTZ REF="BTimeZones.MESZ"></DSTZ>
 </Time.TimeZone.DaylightSavingTZOf>
 </Time.TimeZone>
 </DATASECTION>
</TRANSFER>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix H Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 136

Appendix H (standard extension suggestion) Colour
definitions

Note

The following specification is not a normative component of INTERLIS. This is a standard extension
suggestion based upon the INTERLIS Version 2-Reference Manual in the sense of a recommendation.
However we intend to put it up for discussion and possibly convert it into a more definite regulation.
Consult the corresponding INTERLIS 2-user manuals for examples of application.

Introduction

This specification states in detail why a certain color space named L*C*abh*ab is best suited for colour
definitions. It gives an exhaustive description of this color space, cites conversion formulas related to
other color spaces and gives instructions as to how a transformation of L*C*abh*ab-coordinates into the
color-coordinate system of a concrete screen or printer may be implemented. Furthermore it lays the
foundation for the domains and precisions selected hereafter and indicates coordinates of especially
chosen examples.

Since, amongst other faculties, INTERLIS 2 enables the description of graphics, it must be possible to
specify colors. However a system and equipment neutral definition of "color" is surprisingly complex and
demands comprehension of concepts that are not generally known.

Color is a product of light (= color stimulus), eye (= color valence) and brain function (= sensation). It is
virtually impossible to describe colors through numbers in such a way, that two persons will conceive
them identically. However color values can be measured in a universally acknowledged way, thus
permitting a precise understanding amongst experts.

A method of specifying colors as strings should meet several requirements:

• Equipment independence — It ought to be clearly defined which color actually corresponds to a
certain indication. This is the only means of ascertaining that the result will fulfill all expectations,
whatever equipment is being used.

• Expressiveness — It ought to be possible to specify all colors that "normal" equipment (especially
also good quality printers and plotters) will be able to represent. The spectrum of colors to be
specified should be as wide as possible. Ideally it would comprise all colors a human being can
perceive.

• Intuition — While reading a color description, a human being should intuitively have a notion of the
color being described. An INTERLIS model always has a certain documentary character and
should be understandable to those concerned without demanding major efforts.

• System neutrality — The ways and methods of indicating color should neither give precedence to
a certain system (GIS, operating system, hardware), nor cause the acquisition of special devices.

Color space

The table below shows the suitability of different color spaces as far as application in INTERLIS-graphic
descriptions is concerned:

Color Equipment Expressive- Intuit ive System

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix H Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 137

space Independence ness Intelligibility Neutrality

RGB – – – –

HLS – – + + –

HSV – – + + –

CMY(K) – – – –

XYZ + + – – +

SRGB + – – –

L* a* b* + + + +

L* C*ab h*ab + + + + +

Figure H.1: Suitability of different colorspaces for the purposes of INTERLIS.

The latter of the colorspaces mentioned in figure H.1 L* C*ab h*ab (d.h. L*a*b* with polar coordinates) meets
the requirements stated above in the most satisfactory manner.

L*a*b*

The colorspace L*a*b* (sometimes also called CIELAB) widely used in the graphic industry, can be
derived via transformation from XYZ as described in figure H.2.

−

⋅=

−

⋅=

−

⋅=

nn

nn

n

Z
Zf

Y
Yfb

Y
Yf

X
Xfa

Y
YfL

200*

500*

16116*

, whereby

+
>

=
else787.7

;0088560 if
)(

116
16

3

x
. x x

xf

Figure H.2: The conversion of XYZ to L*a*b*.

In the calculation in figure H.2 a "reference white" is introduced by means of ‹Xn, Yn, Zn› in order to
compensate an eventual tinge of light. Very often the values of CIE -standard light sources (mainly D50,
occasionally D65) are employed. The XYZ-coordinates of these light sources can be found for example in
[Sangwine/Horne, 1989], Table 3.1.

This range possesses a number of useful properties:

• Equipment independence — L*a*b* is derived from XYZ and hence independent of a certain
equipment. It is unequivocally defined which color belongs to a L*a*b*-Triple.

• Expressiveness — In L*a*b* a point is assigned to each color that can be emitted by a reflecting
surface.

• Intuitive Intelligibility — L* means luminance, whereby a completely black surface (which reflects
no light at all) possesses an L* of 0 and a perfect reflector (which reflects all light) an L* of 100. A
human observer will judge a colour with L* = 50 as average brightness. a* is the red-green-axis:
colors with a* = 0 will be perceived as neither red nor green, colours with a negative a* are red,

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix H Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 138

colors with positive a* are green. Analogously b* is the blue-yellow-axis. Within a plane which is
spanned with a* and b* there is a distance from the zero point to a specific color value, the greater
the distance the more saturated a color becomes.

• System neutrality — L*a*b* is absolutely system neutral; being an internationale standard the
colorspace is independent of a specific firm.

• Increasing utilization — The utilization of L*a*b* in professional printing is widely spread.
Programs such as Adobe Photoshop or Acrobat (PDF) support L*a*b*.

• Easy transformability to RGB — L*a*b*-triples can be transformed into the RGB-values of any
screen via multiplication with a 3x3-matrix, followed by a raise to higher power (gamma correction),
which may be carried out efficiently by means of a table (cf. [Adobe, 1992], chapter 23). Thus
system developers will only have to face minimal efforts.

• Good capacity for compression — There is only a marginal difference between L*a*b* and RGB
where processes are concerned that are likely to involve loss while compressing pictures. However
in connection with INTERLIS this is irrelevant.

() ()

=+= −

*

*1*2*2** tan
a

b
abab hbaC

Figure H.3: Conversion of the cartesian L*a*b*-space to the polar form L*C*abh*ab (according to
[Sangwine/Horne, 1998]).

L*C*abh*ab

As described above, in the L*a*b*-space every single axis L* (dark —light), a* (green — red) and b* (blue
— yellow) corresponds to a property of colour which is immediately perceivable.

Nevertheless intuitive intelligibility can be further increased by indicating color coordinates in a polar
instead of a cartesian system (see figure H.4).

– a*

+ b*

+ a*

– b*

green red

blue

yellow

h*
abC* ab

Figure H.4: The colorspace L*C*abh*ab functions with polar coordinates onto L*a*b*.

The formula in figure H.3 for h*ab is only applicable for positive a* and b*; a correct version would provide
case differentiation for every single quadrant. This polar system combines the intuitive intelligibility of HLS
and HSV with the numerous advantages of L*a*b* described above, since it means that the axes L*
(luminance), C* (chroma) und h* (hue) become separately available.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix H Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 139

In INTERLIS-models, whenever precise color indications are desired, they should be made based upon
this color coordinate system.

Required precision

It is part of an INTERLIS-model to indicate the degree of precision to be applied when recording numeric
values. The L*a*b*-space is defined in such a way that the difference between two colors is only just
perceptible, if the value calculated as shown in figure 1.5, equals 1.

Note: [Has/Newman, o.D.] states that the perceptibility of color differences also depends on the amount of
time allowed for the comparison. The article relates an experiment, where the time needed to note
differences was measured in the case of an inexperienced observer. The figures mentioned are 5
seconds for ΔEab = 15, 10 seconds for ΔEab = 10 and 15 seconds for ΔEab = 5.

2*2*2* baLEab ∆+∆+∆=∆

Figure H.5: Calculation of color differences in the Cartesian L*a*b*-space.

Precision of the L*-axis: For luminance a precision of one decimal is sufficient.

Precision of C*ab- and h*ab-axis: Theoretically a* and b* may be unrestricted, but in fact limits of ±128,
rounded off to whole numbers, are considered largely sufficient (cf. [Adobe, 1992]). Thus what degree of
precision is necessary for C*ab und h*ab , to ensure that inaccuracy in the a*/b*-surface does not exceed 1?

Inaccuracy introduced through the indication of angle augments with increasing distance from the zero
point. Thus precision can still be considered sufficient as long as ‹127, 128› and ‹128, 128› within the
a*/b*-surface can be distinguished. As can be seen in figure H.6, one decimal may suffice in this extreme
case. It is a matter of two barely distinguishable hues of orange, however saturated to such a degree that
it seems improbable any apparatus would be able to reproduce them.

a* b* C*ab h*ab

127 128 180.3 45.2

128 128 181.0 45.0

Figure H.6: Cartesian and polar coordinates of a color extremely far away from the zero point

(conversion see figure H.3).

Combination with names

Color names are easier to handle than color codes (i.e. numbers), however this proves to be a
disadvantage, as only a limited number of colors are thus available. In INTERLIS names can be
combined with a numeric specification, enabling users to define their own color names and to exchange
them among one another by the common means of INTERLIS.

Thanks to this definition it is also possible to employ INTERLIS – if need be – in the documenting and
utilization of existing color name systems or color sample catalogues, such as the Pantone- or HKS-
System.

This calls for the definition of a meta class (cf. chapter Meta models and meta objects in the INTERLIS
Version 2-Reference Manual). Its instances, so-called meta objects, are retained in a special transfer-file

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix H Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 140

and are read by the INTERLIS 2-compiler. They are available for INTERLIS data-models and thus can be
used in graphic-definitions in order to determine the color of a certain symbol, etc.

Examples of application in INTERLIS-models

!! Component of the symbology model

CONTRACTED SYMBOLOGY MODEL SymbologyExample AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 TOPIC Signs =

 CLASS LChColor EXTENDS INTERLIS.METAOBJECT =
 !! Attribute "Name" inherited from INTERLIS.METAOBJECT
 Luminance = MANDATORY 0.0 .. 100.0;
 Chroma = MANDATORY 0.0 .. 181.1;
 Hue = MANDATORY 0.0 .. 359.9 CIRCULAR [DEGREE] COUNTERCLOCKWISE;
 END LChColor;

 ...

 !! Component of the symbol class definition within the symbology model
 CLASS ColoredSymbology EXTENDS SIGN =
 ...
 PARAMETER
 Color: METAOBJECT OF SymbologyExample.LChColor;
 END ColoredSymbology;

 ...

 END Signs;
 ...

In a user-defined visualization command (here called SimplePointGr) the color of a user-defined colored
symbol might appear as follows (c f. chapter Grafic description in the INTERLIS Version 2-Reference
Manual):

...

CONTRACTED MODEL SimpleGraphic AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS SymbologyExample, Data;

 SIGN BASKET SimpleSigns ~ SymbologyExample.Signs
 OBJECTS OF Color: Brown
 OBJECTS OF ColoredSymbology: Dot;

 TOPIC ColoredDotGraphic =
 DEPENDS ON Data.Dots;

 GRAPHIC SimpleColoredDotGr BASED ON Data.Dots.Dot =
 Symbol OF SymbologyExample.Signs.ColoredSymbology: (
 Sign := {Dot};
 Pos := Position;
 Color := Brown;
);
 END SimpleColoredDotGr;

 END ColoredDotGraphic;

END SimpleGraphic.
...

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix H Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 141

We neither give a complete example nor represent the necessary meta table, instead we refer you to the
example stated in appendix C A small example Roads in the INTERLIS Version 2-Reference Manual.

Example values

Figure H.7 names some colors as well as their coordinates. Since it is uncertain whether this document
has been conceived in a system (and most likely also printed) which is able to render colors correctly, we
must at this stage do without a colorful representation.

Name L* a* b* C*ab h*ab

Black 0.0 0 0 0.0 0.0

Dark-grey 25.0 0 0 0.0 0.0

Middle-grey 50.0 0 0 0.0 0.0

Light-grey 75.0 0 0 0.0 0.0

White 100.0 0 0 0.0 0.0

Fuchsia 40.0 7
0

0 70.0 0.0

Light-blue 80.0 0 -30 30 270.0

Deep-yellow 90.0 0 100 100.0 90.0

Brown 50.0 3
0

50 58.3 59.0

Lilac 50.0 5
0

-50 70.7 315.0

Figure H.7: Cartesian and polar coordinates of some colors.

A concrete example of application with color-definitions is to be found in appendix C A small example
Roads.

Notes for system developers

System developers of INTERLIS-conforming systems have to deal with the arising question, how to
transform color values from the independent L* C*ab h*ab-system into a color-coordinate-system of a
specific screen or printer.

A standardized file-format will allow you to record color-distortions of a certain imaging component in so-
called component or color matching profiles (so-called ICC-profile format). Amongst others, these files
contain parameters needed in the conversion of an independent color space to a component-specific
color-coordinate-system. The former are either XYZ or L*a*b*, the latter commonly RGB or CMYK.
Format and necessary conversion functions are defined by [ICC, 1996].

Thus in his product a system developer will be able to support directly ICC-profiles. The file format is of a
relatively simple structure, and the conversion functions will be easily implemented. For some platforms
ready-made program libraries (such as Apple ColorSync or Kodak KCMS) are available.

In this context we would like to draw your attention to the fact that PDF directly supports the colorspace
L*a*b*. PostScript even allows you to define your own color ranges in terms of any given transformation

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix H Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 142

from XYZ. The inversion function of the formula indicated in figure H.2 is to be found as example 4.11 in
[Adobe, 1990]. It is relatively simple to program an analogous function in PostScript which will directly
accept L* C*ab h*ab.

Literature

[Adobe, 1990] Adobe Systems: PostScript Language Reference Manual. 2nd Ed., 1990. ISBN 0-201-
18127-4. 764 pages.
The reference manual for PostScript , also provides recommendations for the treatment of colors and different
conversion methods available in PostScript. Example 4.11 on page 191 defines the L*a*b*-colour range in
PostScript.

[Adobe, 1992] Adobe Developers Association: TIFF Revision 6.0.
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
Chapter 23 defines a variety of the TIFF-Format for pictures in the L*a*b*-color range and names a number of
advantages in comparison with RGB. Furthermore you will find the outlines of a fast method for the conversion
of L*a*b* to RGB .

[Apple, 1998] Apple Computer, Inc.: Introduction to Color and Color Management Systems. In: Inside
Macintosh — Managing Color with ColorSync.
https://developer.apple.com/documentation/mac/ACI/ACI-46.html
Easy to understand introduction into different color spaces, with illustrated graphic.

[Apple, o.D.] Apple Computer, Inc.: A Brief Overview Of Color.
http://devworld.apple.com/documentation/GraphicsImaging/Conceptual/csintro/
Concise, easy to understand and rough introduction into different concepts in connection with colors. Intended
for non-specialists.

[Has/Newman, o.D.] Michael Has, Todd Newman: Color Management: Current Practice and The
Adoption of a New Standard. www.color.org/wpaper1.html
Names data for the red-, green- and blue reference point of two typical computer monitors and depicts that
they differ widely from the xy-values of NTSC standard-phosphor-colours often quoted. Indicates a
transformation from XYZ to RGB-space of a certain screen.

[ICC, 1996] International Color Consortium: ICC Profile Format Specification. www.color.org/profile.html
Defines a file-format which allows the characterization of any given component in respect to its colour
representation. Appendix A comments on various colorspaces.

[Poynton, 1997] Charles A. Poynton: Frequently Asked Questions about Color.
www.poynton.com/ColorFAQ.html
Explains in paragraph 36, why HLS and HSV are not suitab le for the specification of colours.

[Sangwine/Horne, 1998] Sangwine, Stephen J. und Horne, Robin E. N. [Hrsg.]: The Colour Imaging
Processing Handbook. Chapman & Hall: London […], 1998. ISBN 0-412-80620-7. 440 pages.
Well-founded introduction into the scientific fundamentals of color perception and its application in image
processing.

[Stokes et al., 1996] Michael Stokes, Matthew Anderson, Srinivasan Chandrasekar und Ricardo Motta: A
Standard Default Color Space for the Internet — sRGB. November 1996.
www.color.org/sRGB.html
Specification of sRGB.

http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
https://developer.apple.com/documentation/mac/ACI/ACI-46.html
http://devworld.apple.com/documentation/GraphicsImaging/Conceptual/csintro/
http://www.color.org/wpaper1.html
http://www.color.org/profile.html
http://www.poynton.com/ColorFAQ.html
http://www.color.org/sRGB.html
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 143

Appendix I (standard extension suggestion) Coordinate
systems and coordinate reference systems

Note

The following specification is not a normative component of INTERLIS. This is a standard extension
suggestion based upon the INTERLIS Version 2-Reference Manual in the sense of a recommendation.
However we intend to put it up for discussion and possibly convert it into a more definite regulation.
Consult the corresponding INTERLIS 2-user manuals for examples of application.

Introduction

Coordinates describe the position of one point in space, provided a corresponding coordinate system has
been set up. If a coordinate system is fixedly positioned in relation to the earth – in other terms:
referenced – then it is called a coordinate reference system. However coordinates not only determine
positions, but also metric quantities which can be derived from coordinates, such as distances, surfaces,
volumes, angles and directions, as well as other properties, e.g. grades and curves.

There is a multitude of classes (types) of coordinate systems, and a greater number still of objects, i.e.
realizations (instances) of coordinate systems (cf. also e.g. [Voser1999]). The Swiss Federal coordinates
e.g. rely on a special instance (object) of a coordinate reference system [Gubler et al. 1996], which can
be derived from a geodetical reference system via map projection [Snyder 1987, Bugayevskiy 1995].
These geodetical reference systems form a category of its own of coordinate reference systems that
describe the geometry of the earth model. For example to describe a two-dimensional position, a sphere
or an ellipsoid is used on whose surface geographical coordinates can be defined. It is slightly more
complicated as soon as altitude is concerned: To serve as geometrical-physical earth model we employ
either a geoid [Marti 1997] or a gravity model [Torge 1975] that defines orthometrical, resp. normal
altitudes. However in practice it is very often only heights in use that are applied.

Since geodata of geomatical applications always are space-related, each geodata-set must be based
upon a coordinate system. Considering that individual coordinate systems differ widely, it is necessary to
supply the corresponding reference-data along with the geodata. This is why INTERLIS enables you to
describe data belonging to a coordinate system.

It is only through knowledge of the underlying coordinate system that it is possible to transfer geodata into
another coordinate system. This again is necessary if geodata provided by different coordinate systems is
to be of common use [Voser 1996].

First we consider coordinate systems of a general type, then the relations (representations) between
(general) coordinate systems, thereafter we int roduce coordinate reference systems and deal with those.

Coordinate systems

A coordinate system allows the "measuring" of metric space. A coordinate system possesses an origin,
coordinate axis (their number corresponding to the dimension of the space spanned), as well as measure
units assigned to the axis. Depending on whether the space in question is one-, two- or three-
dimensional, the coordinate system assigns either a single digit, double digit or triple digit to every point in
space as its coordinate(s).

The euclidic one-, two- or three-dimensional space is defined by its 1, 2 resp. 3 straight axis. Curved
spaces demand additional parameters to define the embedding of their curved axis into a euclidic space.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 144

For geodetical purposes, two-dimensional elliptic spaces as well as various systems of heights, both
treated as special cases of one-dimensional Euclidic spaces are needed in addition to Euclidic spaces of
different dimensions. This is when a gravity model or geoid is called for.

Slightly differing from the hitherto existing usage in geodesy we employ the term of geodetical date as a
synonym for geodatical reference system, designating thus nothing but a special coordinate system, that
is to say a 3D Cartesian coordinate system which has been positioned in relation to the earth. This may
be achieved in two different ways:

(a) The average center of gravity of the earth is defined as the zero point of the coordinate system, the
first axis through the average rotation axis of the earth, the second axis perpendicular to the former
through the average meridian of Greenwich, and the third axis again perpendicular to the former two,
thus creating a clockwise-rotating system. For example the coordinate system WGS84 is defined in
this manner.

(b) The surface of the earth of a certain area (mostly a country) is approximated in an optimal way by
means of a globe or rotation ellipse whose axis of rotation is set parallel to the average rotation axis
of the earth. This rotation ellipsoid defines a Cartesian coordinate system through its smaller half
axis which is parallel to the earth axis, through one of its longer half axis and through a third axis
perpendicular to the former two, thus again creating a clockwise-rotating system.

A 3D Cartesian coordinate system positioned on the earth in accordance to (a) or (b) is called a
geodetical date or geodetical reference system.

Different origin of coordinate systems in geomatics

Different backgrounds lead to various definitions of coordinate systems in:

Sensor techniques: The data capturing methods in classical geodesy (e.g. with theodolites) as well as
photogrammetry and remote sensing use a (local) coordinate system in accordance with each respective
method in their data capturing sensors.

Geopositioning: The description of position on the earth by means of a (geodatical) earth model. There
are three different types of geodatical earth models [Voser 1999]:

• physical: The earth model is either described by means of a gravitational field or a geoid.

• mathematical: The earth model is a symmetrical body (e.g. a globe or ellipsoid).
• topographical: The earth model also takes into consideration mountains and valleys (earth surface

model).
The above-mentioned earth models correspond to different coordinate systems.

Map positioning: Since the surfaces of the above-mentioned earth models are of curved or even more
complex form, the calculation of distances, angles etc. is very difficult. Hence we employ map projections
that represent the two-dimensional surface in a plane. A map projection is a geometrically clearly defined
way of representing the surface of a mathematical earth model in a plane. This process involves
distortions; these however can be determined and controlled in advance.

Mappings between coordinate systems

Since geodata usually are recorded in different coordinate systems or are administered by different
institutions in various systems, it is necessary to know the methods that permit conversion of data
supplied by a source coordinate system A into a target coordinate system Z. This conversion is called
mapping of coordinate system A, resp. of the space defined by A, in coordinate system Z, resp. the space
defined by Z. Mappings between two coordinate systems, resp. between the spaces they define, are
determined by the classes of the two coordinate systems concerned.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 145

We have to distinguish between two fundamentally different mappings of coordinate systems as far as the
origin of formulas and their parameters are concerned, these being conversion and transformation.

The term conversion means mapping between two coordinate systems strictly defined by formulas and
their parameters. These formulas and especially the values of the necessary parameters are determined
in advance [Voser 1999]. Into the category of conversions fall amongst others map projections, i.e.
mappings of ellipsoid surfaces in a plane, furthermore the conversion of elliptic coordinates into the
corresponding Cartesian coordinates with their origin in the center of the ellipse or vice-versa.

A transformation is a mapping between two coordinate systems where rules (formulas) are determined
based upon hypotheses, and parameters are established by means of a statistic analysis of
measurements in both coordinate systems [Voser 1999]. Typical transformations are effected when
replacing one geodatical earth model with another (geodatical date transformation) or when adjusting
local coordinates in a superior system, e.g. With digitizing: the t ransfomation of map- or table-coordinates
into projection-coordinates.

Coordinate reference systems

The term Coordinate Reference System describes a coordinate system, which can be derived from a
geodetical reference system (i.e. a geodetical date) by means of conversion via a sequence of
intermediate coordinate systems.

Geodetical reference systems (or geodetical dates) as such are the most important coordinate reference
systems. They refer to a geodetical earth model (see above).

Survey of the most important coordinate reference systems

In the lower part of figure I.1 some of the most important geodetical and cartographical expressions of
coordinate reference systems are depicted. It is the earth itself that is at the origin of any sequence of
coordinate systems or mappings. We try to assign it a geometrical earth model that would allow the
describing of positions on it. To begin with we can assign to the earth as a whole a 3D Cartesian
coordinate system with its zero point in the gravity center of the earth (c f. method a) in the chapter
Coordinate systems above). Subsequently however we treat the position and height of a point
independently. Firstly let us consider only what needs to be done in order to determine its position.
Geodetical measurements supply the necessary information to determine the size and form of a rotation
ellipsoid that approaches the earth surface locally in an optimal way. According to method b) in chapter
Coordinate systems this rotation ellipsoid can be assigned a geodetical date. Many of the earth models
selected for national surveying are "locally" referenced, i.e. the center of the ellipsoid does not coincide
with the gravity center of the earth. However, as stated above ((a) in the chapter Coordinate systems),
there are geodetical reference systems which are referenced to the gravitation center. Thus nowadays it
is relatively easy to determine the parameters of a date transformation to such a superior system. Once
such a local rotation ellipsoid has been decided upon, it is on the other hand possible to represent its
surface in a plane by means of an appropriate map projection and in accordance with all requirements.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 146

Figure I.1: How to transform the earth surface into 2D horizontal coordinates.

Data structure for coordinate systems and mappings between them

The proposed structure for data necessary for the description of coordinate systems and mapping
between them is not limited to coordinate reference systems, but on purpose has been conceived for
coordinate systems in general. It is our intention to also permit the description of digitizer- and screen
coordinate systems or symbol coordinate systems without any explicit reference to the surface of the
earth.

Coordinate systems and mapping between them are the two key-concepts for the exact characterization
of spatial referencing of geodata. Accordingly the conceptual model (resp. the conceptual schema) of the
data structure features two major groups of classes, these being "Coordinate systems for geodetic
purposes" and "Mappings between coordinate systems". The third dimension, height, is treated as
follows: In a 3D Cartesian coordinate system the height has been implicitly integrated as the third
coordinate. However in daily use coordinate systems usually are a combination of a 2D horizontal
coordinate systems and an additional 1D height system. The (meta) data of coordinate systems of this
type are described by two independent data sets, firstly by the data of a 2D coordinate system (2D
Cartesian or elliptic) and secondly by the data of a height system of appropriate type (normal, orthometric
or elliptic).

How do the proposed data structures help to effect mapping between coordinate systems? In the
following way: Coordinate systems form nodes and mappings between them constitute edges in a graph
structure. In the DOMAIN section of an application model (application schema) the name of the
coordinate system in use is to be found. If the given coordinates are to be mapped into another
coordinate system or for example if GeoTIFF-parameters, which correspond to such a mapping are to be
calculated, then an appropriate program within the graph-structure of coordinate systems and mappings

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 147

has to find the shortest possible way from the node of the given coordinate system (according to
DOMAIN) to the node of the target system. Thereafter the necessary mappings from the source system
via possible intermediate coordinate systems to the target system have to be calculated.

For the description of coordinate systems two internal classes and key words are available in INTERLIS,
these being: AXIS and COORDSYSTEM. These are employed within the conceptual data model (the
coordinate system model or coordinate system schema) "CoordSys" (see below). Further details are to
be found in chapter Reference systems in the INTERLIS Version 2-Reference Manual.

Literature

[Bugayevskiy 1995] Bugayevskiy Lev M., Snyder John P.: Map Projections, A Reference Manual,
Taylor&Francis, London, Bristol 1995.

[Gubler et al. 1996] Gubler E., Gutknecht D., Marti U., Schneider D. Signer Th., Voge B., Wiget A.: Die
neue Landesvermessung der Schweiz LV95; VPK 2/96.

[Marti 1997] Marti, Urs: Geoid der Schweiz 1997. Geodätisch-geophysikalische Arbeiten in der Schweiz,
Schweizerische Geodätische Kommission, Volume 56, Zürich, 1997.

[Torge 1975] Torge, Wolfgang: Geodäsie. Sammlung Göschen 2163, de Gruyter, Berlin – New York,
1975.

[Snyder 1987] Snyder, John P.: Map Projections - A Working Manual, U.S. Geological Survey
Professional Paper 1395, Washington, 1987.

[Voser 1996] Voser, Stefan A; Anforderungen an die Geometrie zur gemeinsamen Nutzung
unterschiedlicher Datenquellen; 4. deutsche Arc/Info-Anwender-Konferenz, Proceedings, März
1996, Freising.

[Voser 1999] Voser, Stefan. A.: MapRef - The Internet Collection of Map Projections and Reference
Systems for Europe; 14. ESRI European User Conference, Presentation and Proceedings; 15.-17.
Nov. 1999; Munich: www.mapref.org/.

http://www.mapref.org/
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 148

The reference system model

Data structure for coordinate systems and coordinate reference systems as well as mapping between
them. Conceptual data model (conceptual schema) with INTERLIS.

!! File CoordSys.ili Release 2005-06-16

INTERLIS 2.3;

REFSYSTEM MODEL CoordSys (en) AT "http://www.interlis.ch/models"
 VERSION "2005-06-16" =

 UNIT
 Angle_Degree = 180 / PI [INTERLIS.rad];
 Angle_Minute = 1 / 60 [Angle_Degree];
 Angle_Second = 1 / 60 [Angle_Minute];

 STRUCTURE Angle_DMS_S =
 Degrees: -180 .. 180 CIRCULAR [Angle_Degree];
 CONTINUOUS SUBDIVISION Minutes: 0 .. 59 CIRCULAR [Angle_Minute];
 CONTINUOUS SUBDIVISION Seconds: 0.000 .. 59.999 CIRCULAR [Angle_Second];
 END Angle_DMS_S;

 DOMAIN
 Angle_DMS = FORMAT BASED ON Angle_DMS_S (Degrees ":" Minutes ":" Seconds);
 Angle_DMS_90 EXTENDS Angle_DMS = "-90:00:00.000" .. "90:00:00.000";

 TOPIC CoordsysTopic =

 !! Special space aspects to be referenced
 !! **************************************

 CLASS Ellipsoid EXTENDS INTERLIS.REFSYSTEM =
 EllipsoidAlias: TEXT*70;
 SemiMajorAxis: MANDATORY 6360000.0000 .. 6390000.0000 [INTERLIS.m];
 InverseFlattening: MANDATORY 0.00000000 .. 350.00000000;
 !! The inverse flattening 0 characterizes the 2-dim sphere
 Remarks: TEXT*70;
 END Ellipsoid;

 CLASS GravityModel EXTENDS INTERLIS.REFSYSTEM =
 GravityModAlias: TEXT*70;
 Definition: TEXT*70;
 END GravityModel;

 CLASS GeoidModel EXTENDS INTERLIS.REFSYSTEM =
 GeoidModAlias: TEXT*70;
 Definition: TEXT*70;
 END GeoidModel;

 !! Coordinate systems for geodetic purposes
 !! **

 STRUCTURE LengthAXIS EXTENDS INTERLIS.AXIS =
 ShortName: TEXT*12;
 Description: TEXT*255;
 PARAMETER
 Unit (EXTENDED): NUMERIC [INTERLIS.LENGTH];
 END LengthAXIS;

 STRUCTURE AngleAXIS EXTENDS INTERLIS.AXIS =
 ShortName: TEXT*12;
 Description: TEXT*255;
 PARAMETER
 Unit (EXTENDED): NUMERIC [INTERLIS.ANGLE];

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 149

 END AngleAXIS;

 CLASS GeoCartesian1D EXTENDS INTERLIS.COORDSYSTEM =
 Axis (EXTENDED): LIST {1} OF LengthAXIS;
 END GeoCartesian1D;

 CLASS GeoHeight EXTENDS GeoCartesian1D =
 System: MANDATORY (
 normal,
 orthometric,
 ellipsoidal,
 other);
 ReferenceHeight: MANDATORY -10000.000 .. +10000.000 [INTERLIS.m];
 ReferenceHeightDescr: TEXT*70;
 END GeoHeight;

 ASSOCIATION HeightEllips =
 GeoHeightRef -- {*} GeoHeight;
 EllipsoidRef -- {1} Ellipsoid;
 END HeightEllips;

 ASSOCIATION HeightGravit =
 GeoHeightRef -- {*} GeoHeight;
 GravityRef -- {1} GravityModel;
 END HeightGravit;

 ASSOCIATION HeightGeoid =
 GeoHeightRef -- {*} GeoHeight;
 GeoidRef -- {1} GeoidModel;
 END HeightGeoid;

 CLASS GeoCartesian2D EXTENDS INTERLIS.COORDSYSTEM =
 Definition: TEXT*70;
 Axis (EXTENDED): LIST {2} OF LengthAXIS;
 END GeoCartesian2D;

 CLASS GeoCartesian3D EXTENDS INTERLIS.COORDSYSTEM =
 Definition: TEXT*70;
 Axis (EXTENDED): LIST {3} OF LengthAXIS;
 END GeoCartesian3D;

 CLASS GeoEllipsoidal EXTENDS INTERLIS.COORDSYSTEM =
 Definition: TEXT*70;
 Axis (EXTENDED): LIST {2} OF AngleAXIS;
 END GeoEllipsoidal;

 ASSOCIATION EllCSEllips =
 GeoEllipsoidalRef -- {*} GeoEllipsoidal;
 EllipsoidRef -- {1} Ellipsoid;
 END EllCSEllips;

 !! Mappings between coordinate systems
 !! ***********************************

 ASSOCIATION ToGeoEllipsoidal =
 From -- {1..*} GeoCartesian3D;
 To -- {1..*} GeoEllipsoidal;
 ToHeight -- {1..*} GeoHeight;
 MANDATORY CONSTRAINT
 ToHeight -> System == #ellipsoidal;
 MANDATORY CONSTRAINT
 To -> EllipsoidRef -> Name == ToHeight -> EllipsoidRef -> Name;
 END ToGeoEllipsoidal;

 ASSOCIATION ToGeoCartesian3D =
 From2 -- {1..*} GeoEllipsoidal;
 FromHeight-- {1..*} GeoHeight;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 150

 To3 -- {1..*} GeoCartesian3D;
 MANDATORY CONSTRAINT
 FromHeight -> System == #ellipsoidal;
 MANDATORY CONSTRAINT
 From2 -> EllipsoidRef -> Name == FromHeight -> EllipsoidRef -> Name;
 END ToGeoCartesian3D;

 ASSOCIATION BidirectGeoCartesian2D =
 From -- {1..*} GeoCartesian2D;
 To -- {1..*} GeoCartesian2D;
 END BidirectGeoCartesian2D;

 ASSOCIATION BidirectGeoCartesian3D =
 From -- {1..*} GeoCartesian3D;
 To2 -- {1..*} GeoCartesian3D;
 Precision: MANDATORY (
 exact,
 measure_based);
 ShiftAxis1: MANDATORY -10000.000 .. 10000.000 [INTERLIS.m];
 ShiftAxis2: MANDATORY -10000.000 .. 10000.000 [INTERLIS.m];
 ShiftAxis3: MANDATORY -10000.000 .. 10000.000 [INTERLIS.m];
 RotationAxis1: Angle_DMS_90;
 RotationAxis2: Angle_DMS_90;
 RotationAxis3: Angle_DMS_90;
 NewScale: 0.000001 .. 1000000.000000;
 END BidirectGeoCartesian3D;

 ASSOCIATION BidirectGeoEllipsoidal =
 From4 -- {1..*} GeoEllipsoidal;
 To4 -- {1..*} GeoEllipsoidal;
 END BidirectGeoEllipsoidal;

 ASSOCIATION MapProjection (ABSTRACT) =
 From5 -- {1..*} GeoEllipsoidal;
 To5 -- {1..*} GeoCartesian2D;
 FromCo1_FundPt: MANDATORY Angle_DMS_90;
 FromCo2_FundPt: MANDATORY Angle_DMS_90;
 ToCoord1_FundPt: MANDATORY -10000000 .. +10000000 [INTERLIS.m];
 ToCoord2_FundPt: MANDATORY -10000000 .. +10000000 [INTERLIS.m];
 END MapProjection;

 ASSOCIATION TransverseMercator EXTENDS MapProjection =
 END TransverseMercator;

 ASSOCIATION SwissProjection EXTENDS MapProjection =
 IntermFundP1: MANDATORY Angle_DMS_90;
 IntermFundP2: MANDATORY Angle_DMS_90;
 END SwissProjection;

 ASSOCIATION Mercator EXTENDS MapProjection =
 END Mercator;

 ASSOCIATION ObliqueMercator EXTENDS MapProjection =
 END ObliqueMercator;

 ASSOCIATION Lambert EXTENDS MapProjection =
 END Lambert;

 ASSOCIATION Polyconic EXTENDS MapProjection =
 END Polyconic;

 ASSOCIATION Albus EXTENDS MapProjection =
 END Albus;

 ASSOCIATION Azimutal EXTENDS MapProjection =
 END Azimutal;

 ASSOCIATION Stereographic EXTENDS MapProjection =

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 151

 END Stereographic;

 ASSOCIATION HeightConversion =
 FromHeight -- {1..*} GeoHeight;
 ToHeight -- {1..*} GeoHeight;
 Definition: TEXT*70;
 END HeightConversion;

 END CoordsysTopic;

END CoordSys.

The file MiniCoordSysData, whose names might occur in MetadataBasketDef, contains the following data
in the INTERLIS 2-transfer format.

<?xml version="1.0" encoding="UTF-8"?>

<!-- File MiniCoordSysData.xml 2005-06-16 (http://www.interlis.ch/models) -->

<TRANSFER xmlns="http://www.interlis.ch/INTERLIS2.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.interlis.ch/INTERLIS2.3
 MiniCoordSysData.xsd">
 <HEADERSECTION VERSION="2.3" SENDER="KOGIS">
 <MODELS>
 <MODEL NAME="CoordSys" URI="http://www.interlis.ch/models"
 VERSION="2005-06-16"/>
 </MODELS>

 <ALIAS>
 <ENTRIES FOR="CoordSys">
 <TAGENTRY FROM="CoordSys.Angle_DMS_S" TO="CoordSys.Angle_DMS_S"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic"
 TO="CoordSys.CoordsysTopic"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.Ellipsoid"
 TO="CoordSys.CoordsysTopic.Ellipsoid"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GravityModel"
 TO="CoordSys.CoordsysTopic.GravityModel"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GeoidModel"
 TO="CoordSys.CoordsysTopic.GeoidModel"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.LengthAXIS"
 TO="CoordSys.CoordsysTopic.LengthAXIS"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.AngleAXIS"
 TO="CoordSys.CoordsysTopic.AngleAXIS"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GeoCartesian1D"
 TO="CoordSys.CoordsysTopic.GeoCartesian1D"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GeoHeight"
 TO="CoordSys.CoordsysTopic.GeoCartesian1D"/>
 <DELENTRY TAG="CoordSys.CoordsysTopic.GeoHeight"
 ATTR="System"/>
 <DELENTRY TAG="CoordSys.CoordsysTopic.GeoHeight"
 ATTR="ReferenceHeight"/>
 <DELENTRY TAG="CoordSys.CoordsysTopic.GeoHeight"
 ATTR="ReferenceHeightDescr"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GeoHeight"
 TO="CoordSys.CoordsysTopic.GeoHeight"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.HeightEllips"
 TO="CoordSys.CoordsysTopic.HeightEllips"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.HeightGravit"
 TO="CoordSys.CoordsysTopic.HeightGravit"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.HeightGeoid"
 TO="CoordSys.CoordsysTopic.HeightGeoid"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GeoCartesian2D"
 TO="CoordSys.CoordsysTopic.GeoCartesian2D"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GeoCartesian3D"
 TO="CoordSys.CoordsysTopic.GeoCartesian3D"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.GeoEllipsoidal"
 TO="CoordSys.CoordsysTopic.GeoEllipsoidal"/>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 152

 <TAGENTRY FROM="CoordSys.CoordsysTopic.EllCSEllips"
 TO="CoordSys.CoordsysTopic.EllCSEllips"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.ToGeoEllipsoidal"
 TO="CoordSys.CoordsysTopic.ToGeoEllipsoidal"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.ToGeoCartesian3D"
 TO="CoordSys.CoordsysTopic.ToGeoCartesian3D"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.BidirectGeoCartesian2D"
 TO="CoordSys.CoordsysTopic.BidirectGeoCartesian2D"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.BidirectGeoCartesian3D"
 TO="CoordSys.CoordsysTopic.BidirectGeoCartesian3D"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.BidirectGeoEllipsoidal"
 TO="CoordSys.CoordsysTopic.BidirectGeoEllipsoidal"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.TransverseMercator"
 TO="CoordSys.CoordsysTopic.TransverseMercator"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.SwissProjection"
 TO="CoordSys.CoordsysTopic.SwissProjection"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.Mercator"
 TO="CoordSys.CoordsysTopic.Mercator"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.ObliqueMercator"
 TO="CoordSys.CoordsysTopic.ObliqueMercator"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.Lambert"
 TO="CoordSys.CoordsysTopic.Lambert"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.Polyconic"
 TO="CoordSys.CoordsysTopic.Polyconic"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.Albus"
 TO="CoordSys.CoordsysTopic.Albus"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.Azimutal"
 TO="CoordSys.CoordsysTopic.Azimutal"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.Stereographic"
 TO="CoordSys.CoordsysTopic.Stereographic"/>
 <TAGENTRY FROM="CoordSys.CoordsysTopic.HeightConversion"
 TO="CoordSys.CoordsysTopic.HeightConversion"/>
 </ENTRIES>
 </ALIAS>

 <COMMENT>
 example dataset ili2 refmanual appendix I
 </COMMENT>
 </HEADERSECTION>

 <DATASECTION>
 <CoordSys.CoordsysTopic BID="BCoordSys">
 <CoordSys.CoordsysTopic.Ellipsoid TID="BCoordSys.Bessel">
 <Name>Bessel</Name>
 <EllipsoidAlias>Bessel (1841)</EllipsoidAlias>
 <SemiMajorAxis>6377397.1550</SemiMajorAxis>
 <InverseFlattening>299.1528128</InverseFlattening>
 <Remarks>Documentation swisstopo 19031266</Remarks>
 </CoordSys.CoordsysTopic.Ellipsoid >

 <CoordSys.CoordsysTopic.Ellipsoid TID="BCoordSys.WGS72">
 <Name>WGS72</Name>
 <EllipsoidAlias>World Geodetic System 1972</EllipsoidAlias>
 <SemiMajorAxis>6378135.000</SemiMajorAxis>
 <InverseFlattening>298.2600000</InverseFlattening>
 </CoordSys.CoordsysTopic.Ellipsoid>

 <CoordSys.CoordsysTopic.GravityModel
 TID="BCoordSys.CHDeviationOfTheVertical">
 <Name>CHDeviationOfTheVertical</Name>
 <Definition>See software LAG swisstopo</Definition>
 </CoordSys.CoordsysTopic.GravityModel>

 <CoordSys.CoordsysTopic.GeoidModel TID="BCoordSys.CHGeoid">
 <Name>CHGeoid</Name>
 <Definition>See new Swiss Geoid swisstopo</Definition>
 </CoordSys.CoordsysTopic.GeoidModel>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 153

 <CoordSys.CoordsysTopic.GeoHeight TID="BCoordSys.SwissOrthometricAlt">
 <Name>SwissOrthometricAlt</Name>
 <Axis>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>h</ShortName>
 <Description>Swiss Orthometric Altitude</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 </Axis>
 <System>orthometric</System>
 <ReferenceHeight>373.600</ReferenceHeight>
 <ReferenceHeightDescr>Pierre du Niton</ReferenceHeightDescr>
 <EllipsoidRef REF="BCoordSys.Bessel"/>
 <GeoidRef REF="BCoordSys.CHGeoid"/>
 <GravityRef REF="BCoordSys.CHDeviationOfTheVertical"/>
 </CoordSys.CoordsysTopic.GeoHeight>

 <CoordSys.CoordsysTopic.GeoHeight TID="BCoordSys.SwissEllipsoidalAlt">
 <Name>SwissEllipsoidalAlt</Name>
 <Axis>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>H</ShortName>
 <Description>Swiss Ellipsoidal Altitude</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 </Axis>
 <System>ellipsoidal</System>
 <ReferenceHeight>0.000</ReferenceHeight>
 <ReferenceHeightDescr>Sea level</ReferenceHeightDescr>
 <EllipsoidRef REF="BCoordSys.Bessel"/>
 <GeoidRef REF="BCoordSys.CHGeoid"/>
 <GravityRef REF="BCoordSys.CHDeviationOfTheVertical"/>
 </CoordSys.CoordsysTopic.GeoHeight>

 <CoordSys.CoordsysTopic.GeoCartesian2D TID="BCoordSys.COORD2">
 <Name>COORD2</Name>
 <Axis>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>X</ShortName>
 <Description>X-axis</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>Y</ShortName>
 <Description>Y-axis</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 </Axis>
 <Definition>Mathematical Cartesian 2D Refsystem</Definition>
 </CoordSys.CoordsysTopic.GeoCartesian2D>

 <CoordSys.CoordsysTopic.GeoCartesian2D TID="BCoordSys.CHLV03">
 <Name>CHLV03</Name>
 <Axis>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>Y</ShortName>
 <Description>East-value</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>X</ShortName>
 <Description>North-value</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 </Axis>
 <Definition>Geodetic Cartesian 2D Refsystem</Definition>
 </CoordSys.CoordsysTopic.GeoCartesian2D>

 <CoordSys.CoordsysTopic.GeoCartesian3D TID="BCoordSys.COORD3">
 <Name>COORD3</Name>
 <Axis>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>X</ShortName>
 <Description>X-axis</Description>

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 154

 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>Y</ShortName>
 <Description>Y-axis</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>Z</ShortName>
 <Description>Z-axis</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 </Axis>
 <Definition>Mathematical Cartesian 3D Refsystem</Definition>
 </CoordSys.CoordsysTopic.GeoCartesian3D>

 <CoordSys.CoordsysTopic.GeoCartesian3D TID="BCoordSys.CH1903">
 <Name>CH1903</Name>
 <Axis>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>XC</ShortName>
 <Description>Equator Greenwich</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>YC</ShortName>
 <Description>Equator East</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>ZC</ShortName>
 <Description>North</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 </Axis>
 <Definition>Swiss Geodetic Cartesian 3D Refsystem</Definition>
 </CoordSys.CoordsysTopic.GeoCartesian3D>

 <CoordSys.CoordsysTopic.GeoCartesian3D TID="BCoordSys.WGS84">
 <Name>WGS84</Name>
 <Axis>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>XW</ShortName>
 <Description>Equator Greenwich</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>YW</ShortName>
 <Description>Equator East</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 <CoordSys.CoordsysTopic.LengthAXIS>
 <ShortName>ZW</ShortName>
 <Description>North</Description>
 </CoordSys.CoordsysTopic.LengthAXIS>
 </Axis>
 <Definition>World Geodetic System 1984</Definition>
 </CoordSys.CoordsysTopic.GeoCartesian3D>

 <CoordSys.CoordsysTopic.GeoEllipsoidal TID="BCoordSys.Switzerland">
 <Name>Switzerland</Name>
 <Axis>
 <CoordSys.CoordsysTopic.AngleAXIS>
 <ShortName>Lat</ShortName>
 <Description>Latitude</Description>
 </CoordSys.CoordsysTopic.AngleAXIS>
 <CoordSys.CoordsysTopic.AngleAXIS>
 <ShortName>Long</ShortName>
 <Description>Longitude</Description>
 </CoordSys.CoordsysTopic.AngleAXIS>
 </Axis>
 <Definition>Coordinates on the Swiss Ellipsoid 1903</Definition>
 <EllipsoidRef REF="BCoordSys.Bessel"/>
 </CoordSys.CoordsysTopic.GeoEllipsoidal>

 <CoordSys.CoordsysTopic.ToGeoEllipsoidal

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 155

 TID="BCoordSys.FromCH1903toSwitzerland">
 <From REF="BCoordSys.CH1903"></From>
 <To REF="BCoordSys.Switzerland"></To>
 <ToHeight REF="BCoordSys.SwissEllipsoidalAlt"></ToHeight>
 </CoordSys.CoordsysTopic.ToGeoEllipsoidal>

 <CoordSys.CoordsysTopic.ToGeoCartesian3D
 TID="BCoordSys.FromSwitzerlandToCH1903">
 <From2 REF="BCoordSys.Switzerland"></From2>
 <FromHeight REF="BCoordSys.SwissEllipsoidalAlt"></FromHeight>
 <To3 REF="BCoordSys.CH1903"></To3>
 </CoordSys.CoordsysTopic.ToGeoCartesian3D>

 <CoordSys.CoordsysTopic.BidirectGeoCartesian3D
 TID="BCoordSys.WGS84toCH1903">
 <From REF="BCoordSys.WGS84"></From>
 <To2 REF="BCoordSys.CH1903"></To2>
 <Precision>measure_based</Precision>
 <ShiftAxis1>-660.077</ShiftAxis1>
 <ShiftAxis2>-13.551</ShiftAxis2>
 <ShiftAxis3>-369.344</ShiftAxis3>
 <RotationAxis1>-0:0:2.484</RotationAxis1>
 <RotationAxis2>-0:0:1.783</RotationAxis2>
 <RotationAxis3>-0:0:2.939</RotationAxis3>
 <NewScale>0.99444</NewScale>
 </CoordSys.CoordsysTopic.BidirectGeoCartesian3D>

 <CoordSys.CoordsysTopic.BidirectGeoCartesian3D
 TID="BCoordSys.CH1903toWGS84">
 <From REF="BCoordSys.CH1903"></From>
 <To2 REF="BCoordSys.WGS84"></To2>
 <Precision>measure_based</Precision>
 <ShiftAxis1>660.077</ShiftAxis1>
 <ShiftAxis2>13.551</ShiftAxis2>
 <ShiftAxis3>369.344</ShiftAxis3>
 <RotationAxis1>0:0:2.484</RotationAxis1>
 <RotationAxis2>0:0:1.783</RotationAxis2>
 <RotationAxis3>0:0:2.939</RotationAxis3>
 <NewScale>1.00566</NewScale>
 </CoordSys.CoordsysTopic.BidirectGeoCartesian3D>

 <CoordSys.CoordsysTopic.TransverseMercator
 TID="BCoordSys.FromCH1903ToSwitzerland">
 <From5 REF="BCoordSys.Switzerland"></From5>
 <To5 REF="BCoordSys.CHLV03"></To5>
 <FromCo1_FundPt>46:57:08.66</FromCo1_FundPt>
 <FromCo2_FundPt>7:26:22.50</FromCo2_FundPt>
 <ToCoord1_FundPt>600000</ToCoord1_FundPt>
 <ToCoord2_FundPt>200000</ToCoord2_FundPt>
 </CoordSys.CoordsysTopic.TransverseMercator>

 <CoordSys.CoordsysTopic.HeightConversion TID="BCoordSys.ElliphToOrth">
 <FromHeight REF="BCoordSys.SwissEllipsoidalAlt"></FromHeight>
 <ToHeight REF="BCoordSys.SwissOrthometricAlt"></ToHeight>
 </CoordSys.CoordsysTopic.HeightConversion>

 <CoordSys.CoordsysTopic.HeightConversion TID="BCoordSys.OrthToElliph">
 <FromHeight REF="BCoordSys.SwissOrthometricAlt"></FromHeight>
 <ToHeight REF="BCoordSys.SwissEllipsoidalAlt"></ToHeight>
 </CoordSys.CoordsysTopic.HeightConversion>
 </CoordSys.CoordsysTopic>
 </DATASECTION>
</TRANSFER>

Example

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix I Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 156

What information within an application model (resp. application schema) is needed in order to identify
unequivocally the coordinate system employed, resp. the coordinate reference system?

MODEL Example (en) AT "http://www.interlis.ch/"
 VERSION "2005-06-16" =

 IMPORTS CoordSys;

 REFSYSTEM BASKET BCoordSys ~ CoordSys.CoordsysTopic
 OBJECTS OF GeoCartesian2D: CHLV03
 OBJECTS OF GeoHeight: SwissOrthometricAlt;

 DOMAIN
 LCoord = COORD
 480000.000 .. 850000.000 [INTERLIS.m] {CHLV03[1]},
 60000.000 .. 320000.000 [INTERLIS.m] {CHLV03[2]},
 ROTATION 2 -> 1;
 Height = COORD
 -200.000 .. 5000.000 [INTERLIS.m] {SwissOrthometricAlt[1]};
 HCoord = COORD
 480000.000 .. 850000.000 [INTERLIS.m] {CHLV03[1]},
 60000.000 .. 320000.000 [INTERLIS.m] {CHLV03[2]},
 -200.000 .. 5000.000 [INTERLIS.m] {SwissOrthometricAlt[1]},
 ROTATION 2 -> 1;

 TOPIC T =

 CLASS ControlPoint =
 Name: TEXT*20;
 Position: LCoord;
 END ControlPoint;

 END T;

END Example.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix J Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 157

Appendix J (standard extension suggestion)
Symbology models

Note

The following specification is not a normative component of INTERLIS. This is a standard extension
suggestion based upon the INTERLIS Version 2-Reference Manual in the sense of a recommendation.
However we intend to put it up for discussion and possibly convert it into a more definite regulation.
Consult the corresponding INTERLIS 2-user manuals for examples of application.

Abstract symbology model

Description of the abstract symbology model.

!! File AbstractSymbology.ili Release 2005-06-16

INTERLIS 2.3;

CONTRACTED SYMBOLOGY MODEL AbstractSymbology (en)
 AT "http://www.interlis.ch/models"
 VERSION "2005-06-16" =

 UNIT
 Millimeter [mm] = 0.001 [INTERLIS.m];
 Angle_Degree = 180 / PI [INTERLIS.rad];

 DOMAIN
 Style_COORD2 (ABSTRACT) = COORD NUMERIC, NUMERIC;
 Style_COORD3 (ABSTRACT) = COORD NUMERIC, NUMERIC, NUMERIC;
 Style_POLYLINE (ABSTRACT) = POLYLINE WITH (STRAIGHTS, ARCS)
 VERTEX Style_COORD2; !! {Planar}?
 Style_SURFACE (ABSTRACT) = SURFACE WITH (STRAIGHTS, ARCS)
 VERTEX Style_COORD2;
 Style_INT (ABSTRACT) = NUMERIC; !! [Units?]
 Style_FLOAT (ABSTRACT) = NUMERIC; !! [Units?]
 Style_ANGLE (ABSTRACT) = 0.000 .. 359.999 CIRCULAR [Angle_Degree]
 COUNTERCLOCKWISE; !! RefSystem?

 TOPIC Signs =

 !! Graphic interface

 CLASS TextSign (ABSTRACT) EXTENDS INTERLIS.SIGN =
 PARAMETER
 Txt : MANDATORY TEXT;
 Geometry : MANDATORY Style_COORD2;
 Rotation : Style_ANGLE; !! Default 0.0
 HAli : HALIGNMENT; !! Default Center
 VAli : VALIGNMENT; !! Default Half
 END TextSign;

 CLASS SymbolSign (ABSTRACT) EXTENDS INTERLIS.SIGN =
 PARAMETER
 Geometry : MANDATORY Style_COORD2;
 Scale : Style_FLOAT;
 Rotation : Style_ANGLE; !! Default 0.0
 END SymbolSign;

 CLASS PolylineSign (ABSTRACT) EXTENDS INTERLIS.SIGN =
 PARAMETER

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix J Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 158

 Geometry : MANDATORY Style_POLYLINE;
 END PolylineSign;

 CLASS SurfaceSign (ABSTRACT) EXTENDS INTERLIS.SIGN =
 PARAMETER
 Geometry : MANDATORY Style_SURFACE;
 END SurfaceSign;

 END Signs;

END AbstractSymbology.

Standard symbology model

Description of the extended standard symbology model built upon its abstract version.
!! File StandardSymbology.ili Release 2005-06-16

INTERLIS 2.3;

CONTRACTED SYMBOLOGY MODEL StandardSymbology (en)
 AT "http://www.interlis.ch/models"
 VERSION "2005-06-16" =

 !! Extended symbology model with symbol libraries and priorities.

 IMPORTS AbstractSymbology;

 UNIT
 Angle_Degree = 180 / PI [INTERLIS.rad];

 DOMAIN
 SS_Priority = 0 .. 9999;
 SS_Float = -2000000000.000 .. 2000000000.000;
 SS_Angle = 0.000 .. 359.999
 CIRCULAR [Angle_Degree] COUNTERCLOCKWISE;
 SS_Coord2 = COORD -2000000000.000 .. 2000000000.000 [INTERLIS.m],
 -2000000000.000 .. 2000000000.000 [INTERLIS.m],
 ROTATION 2 -> 1;
 SS_Polyline = POLYLINE WITH (STRAIGHTS, ARCS)
 VERTEX SS_Coord2;
 SS_Surface = SURFACE WITH (STRAIGHTS, ARCS)
 VERTEX SS_Coord2;

 TOPIC StandardSigns EXTENDS AbstractSymbology.Signs =

 !! StandardSigns contains symbol libraries and symbol interfaces.
 !! The libraries (colors, fonts/symbols and line patterns) form the
 !! base for the construction of concrete symbols. The symbol interfaces
 !! extend the symbol interfaces of AbstractSymbology by priorites.

 !! Library section
 !! +++++++++++++++

 !! Color library
 !! =============
 !! Colors are defined by LCh values with transparency.

 CLASS Color =
 Name: TEXT*40; !! name of color, i.e. "light green"
 L: MANDATORY 0.0 .. 100.0; !! Luminance
 C: MANDATORY 0.0 .. 181.1; !! Chroma
 H: MANDATORY 0.0 .. 359.9 CIRCULAR [Angle_Degree] COUNTERCLOCKWISE; !! Hue
 T: MANDATORY 0.000 .. 1.000; !! Transparency: 0=totally transparent, 1=opaque
 END Color;

 !! Polyline attributes

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix J Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 159

 !! +++++++++++++++++++
 !! Presentation parameters for simple continuous lines. Polyline attributes
 !! are used by all other polyline definitions (see below).

 CLASS PolylineAttrs =
 Width : SS_Float;
 Join : (!! connection form for line segments
 bevel,
 round,
 miter
);
 MiterLimit : 1.0 .. 1000.0; !! only for Join = miter
 Caps : (!! termination form at end of line
 round,
 butt
);
 END PolylineAttrs;

 !! Font- and symbol library
 !! ========================
 !! Symbols are a collection of lines and surfaces. Symbols are
 !! organized in fonts. A font can be either a text font or a symbol
 !! font. If the font is a text font (Type = #text), every symbol
 !! (Character) has an UCS4 code (Unicode) and a spacing parameter assigned.

 STRUCTURE FontSymbol_Geometry (ABSTRACT) =
 !! Basic structure for uniform treatment of all symbol geometries.
 END FontSymbol_Geometry;

 STRUCTURE FontSymbol_Polyline EXTENDS FontSymbol_Geometry =
 Color : REFERENCE TO Color; !! only for symbols
 LineAttrs : REFERENCE TO PolylineAttrs;
 Geometry : MANDATORY SS_Polyline;
 END FontSymbol_Polyline;

 STRUCTURE FontSymbol_Surface EXTENDS FontSymbol_Geometry =
 FillColor : REFERENCE TO Color; !! only for symbols
 Geometry : MANDATORY SS_Surface;
 !! Remark: Has no line symbology, because the boundary is *not* part
 !! of the surface. With FillColor you define only the color of the
 !! surface filling.
 END FontSymbol_Surface;

 CLASS FontSymbol =
 !! All font symbols are defined for size 1.0 and scale 1.0.
 !! The value is measured in user units (i.e. normally [m]).
 Name : TEXT*40; !! Symbol name, if known
 UCS4 : 0 .. 4000000000; !! only for text symbols (characters)
 Spacing : SS_Float; !! only for text symbols (characters)
 Geometry : LIST OF FontSymbol_Geometry
 RESTRICTION (FontSymbol_Polyline; FontSymbol_Surface);
 END FontSymbol;

 CLASS Font =
 Name : MANDATORY TEXT*40; !! Font name or name of external font
 Internal : MANDATORY BOOLEAN; !! Internal or external font
 !! Only for internal fonts the geometric
 !! definitions of the symbols is contained
 !! in FontSymbol.
 Type : MANDATORY (
 symbol,
 text
);
 BottomBase : SS_Float; !! Only for text fonts, measured relative to text
 !! height 1.0
 END Font;

 ASSOCIATION FontAssoc =

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix J Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 160

 Font -<#> {1} Font;
 Symbol -- {0..*} FontSymbol;
 END FontAssoc;

 !! Line symbology library
 !! ======================
 !! With the line sybology library the user can define continuous, dashed or
 !! patterned lines. It is also possible to define multi line symbologies.
 !! Each line in a multi line symbology can be continuous, dashed or patterned
 !! for itself. The offset indicates the distance from the middle axis. All
 !! are stored in the library relative to the width 1.0. The width can be over
 !! written by the symbology parameter Width in the symbology interface. For
 !! continuous lines the Width parameter defines the total width of the line,
 !! for multi lines the parameter Width scales the attribute value offset.

 CLASS LineStyle (ABSTRACT) =
 Name : MANDATORY TEXT*40;
 END LineStyle;

 CLASS LineStyle_Solid EXTENDS LineStyle =
 END LineStyle_Solid;

 ASSOCIATION LineStyle_SolidColorAssoc =
 Color -- {0..1} Color;
 LineStyle -- {1} LineStyle_Solid;
 END LineStyle_SolidColorAssoc;

 ASSOCIATION LineStyle_SolidPolylineAttrsAssoc =
 LineAttrs -- {0..1} PolylineAttrs;
 LineStyle -- {1} LineStyle_Solid;
 END LineStyle_SolidPolylineAttrsAssoc;

 STRUCTURE DashRec =
 DLength : SS_Float; !! Length of dash
 END DashRec;

 CLASS LineStyle_Dashed EXTENDS LineStyle =
 Dashes : LIST OF DashRec; !! 1. dash is continuous
 !! 2. dash is not visible
 !! 3. dash is continuous
 !! etc.
 END LineStyle_Dashed;

 ASSOCIATION LineStyle_DashedColorAssoc =
 Color -- {0..1} Color;
 LineStyle_Dashed -- {1} LineStyle_Dashed;
 END LineStyle_DashedColorAssoc;

 ASSOCIATION LineStyle_DashedLineAttrsAssoc =
 LineAttrs -- {0..1} PolylineAttrs;
 LineStyle_Dashed -- {1} LineStyle_Dashed;
 END LineStyle_DashedLineAttrsAssoc;

 STRUCTURE Pattern_Symbol =
 FontSymbRef : MANDATORY REFERENCE TO FontSymbol;
 ColorRef : REFERENCE TO Color;
 Weight : SS_Float; !! Width for symbol lines
 Scale : SS_Float; !! Default: 1.0
 Dist : MANDATORY SS_Float; !! Distance along polyline
 Offset : MANDATORY SS_Float; !! Vertical distance to polyline axis
 END Pattern_Symbol;

 CLASS LineStyle_Pattern EXTENDS LineStyle =
 PLength : MANDATORY SS_Float;
 Symbols : LIST OF Pattern_Symbol;
 !! after PLength the pattern is repeated
 END LineStyle_Pattern;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix J Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 161

 !! Symbology interface
 !! +++++++++++++++++++

 !! Text interface
 !! ==============

 CLASS TextSign (EXTENDED) =
 Height : MANDATORY SS_Float;
 Weight : SS_Float; !! line width for line fonts
 Slanted : BOOLEAN;
 Underlined : BOOLEAN;
 Striked : BOOLEAN;
 ClipBox : SS_Float; !! Defines a rectangular surface around the text
 !! with distance ClipBox from text.
 PARAMETER
 Priority : MANDATORY SS_Priority;
 END TextSign;

 ASSOCIATION TextSignFontAssoc =
 Font -- {1} Font;
 TextSign -- {0..*} TextSign;
 MANDATORY CONSTRAINT
 Font -> Type == #text;
 END TextSignFontAssoc;

 ASSOCIATION TextSignColorAssoc =
 Color -- {0..1} Color;
 TextSign -- {0..*} TextSign;
 END TextSignColorAssoc;

 ASSOCIATION TextSignClipFontAssoc =
 ClipFont -- {0..1} Font;
 TextSign2 -- {0..*} TextSign;
 END TextSignClipFontAssoc;

 !! Symbol interface
 !! ================

 CLASS SymbolSign (EXTENDED) =
 Scale : SS_Float;
 Rotation : SS_Angle;
 PARAMETER
 Priority : MANDATORY SS_Priority;
 END SymbolSign;

 ASSOCIATION SymbolSignSymbolAssoc =
 Symbol -- {1} FontSymbol;
 SymbolSign -- {0..*} SymbolSign;
 END SymbolSignSymbolAssoc;

 ASSOCIATION SymbolSignClipSymbolAssoc =
 ClipSymbol -- {0..1} FontSymbol;
 SymbolSign2 -- {0..*} SymbolSign;
 END SymbolSignClipSymbolAssoc;

 ASSOCIATION SymbolSignColorAssoc =
 Color -- {0..1} Color;
 SymbolSign -- {0..*} SymbolSign;
 END SymbolSignColorAssoc;

 !! Polyline interface
 !! ==================

 CLASS PolylineSign (EXTENDED) =
 !! The parameter Width of the interface influences the width *and*
 !! the scale of start- and endsymbols.
 PARAMETER
 Priority : MANDATORY SS_Priority;

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix J Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 162

 Width : SS_Float; !! Width of line symbology, default = 1.0
 END PolylineSign;

 ASSOCIATION PolylineSignLineStyleAssoc =
 Style -- {1} LineStyle;
 PolylineSign -- {0..*} PolylineSign;
 ATTRIBUTE
 Offset : SS_Float; !! Default 0.0
 END PolylineSignLineStyleAssoc;

 ASSOCIATION PolylineSignColorAssoc =
 Color -- {0..1} Color;
 PolylineSign -- {0..*} PolylineSign;
 END PolylineSignColorAssoc;

 ASSOCIATION PolylineSignClipStyleAssoc =
 ClipStyle -- {0..1} LineStyle; !! Used as a mask for clipping
 PolylineSign2 -- {0..*} PolylineSign;
 END PolylineSignClipStyleAssoc;

 ASSOCIATION PolylineSignStartSymbolAssoc =
 StartSymbol -- {0..1} SymbolSign; !! Symbol at start of line in opposite
 !! direction of line
 PolylineSign -- {0..*} PolylineSign;
 END PolylineSignStartSymbolAssoc;

 ASSOCIATION PolylineSignEndSymbolAssoc =
 EndSymbol -- {0..1} SymbolSign; !! Symbol at end of line in same
 !! direction as line
 PolylineSign3 -- {0..*} PolylineSign;
 END PolylineSignEndSymbolAssoc;

 !! Surface interface
 !! =================

 CLASS SurfaceSign (EXTENDED) =
 Clip : (
 inside,
 outside
);
 HatchOffset : SS_Float;
 PARAMETER
 Priority : MANDATORY SS_Priority;
 HatchAng : SS_Angle; !! Default 0.0
 HatchOrg : SS_Coord2; !! Default 0.0/0.0, Anchor point for hatching
 !! or filling
 END SurfaceSign;

 ASSOCIATION SurfaceSignColorAssoc =
 FillColor -- {0..1} Color; !! Fill color
 SurfaceSign -- {0..*} SurfaceSign;
 END SurfaceSignColorAssoc;

 ASSOCIATION SurfaceSignBorderAssoc =
 Border -- {0..1} PolylineSign; !! Border symbology
 SurfaceSign -- {0..*} SurfaceSign;
 END SurfaceSignBorderAssoc;

 ASSOCIATION SurfaceSignHatchSymbAssoc =
 HatchSymb -- {0..1} PolylineSign; !! Hatch symbology
 SurfaceSign2 -- {0..*} SurfaceSign;
 END SurfaceSignHatchSymbAssoc;

 END StandardSigns;

END StandardSymbology.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix J Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 163

Example

Cf. appendix C A small example Roads.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 164

Appendix K (informative) Glossary

Common abbreviations, abbreviation of technical terminology see definitions
Abbr. Abbreviation.

Art. Article (in legal texts).

Par. Paragraph (in legal texts).

Def. Definition.

de deutsch (German).

en English.

fr français (French).

Syn. Synonym.

INTERLIS The note INTERLIS e.g. INTERLIS 2.6.4 signifies that in paragraph 2.6.4 of this INTERLIS
Version 2-Reference Manual (SN 612031) further information concerning this term can be
found.

→ A A is a term that has been defined in this glossary.

Definitions
Abstract class

→ Class, which cannot contain → objects.

Note: An abstract class is always incomplete and forms the base for → subclasses (i.e. →
specializations) whose object set then need not be void.

Aggregation

Directed → proper relationship between a superior → class and an inferior → class. Several parts
(sub-objects) of an inferior → class are assigned to an entity (meta object of the superior →
class). It is also possible to assign several entities to a part. When copying an entity all assigned
parts are copied as well. When deleting an entity assigned parts may continue existing.

Note 1: By means of an aggregation the → relationship between an entity and its parts is
described (e.g. car/motor). The → role of the → subclass can be termed with "is-part-of".

Note 2: In → INTERLIS 2 an aggregation is indicated analogous to the → UML class diagram
notation with a (void) rhombus (-<>).

Note 3: See also → composition.

Amendment

Consistency-saving → operation on a → database.

Area

→ Planar general surface of an → area division.

Syn. area object.

Area division

Set of → planar general surfaces which do not have any → points or only boundary points in
common.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 165

Area object

Syn. for → area.

Argument

→ Value of a → parameter.

Association

Proper relationship, which does not restrict the independence of the → classes concerned.
Assigned → objects can, independently of each other, be copied or deleted.

Note 1: In → INTERLIS 2 the → association class is available for describing an association.

Note 2: See also → reference attribute, → aggregation and → composition.

Association class

→ Class element to describe an → association, → aggregation or → composition.

Attribute

Data (elements) corresponding to a specific characteristic of → objects of a → class and of →
structure elements of a → structure (c f. INTERLIS 2.6.4). Each attribute has an attribute-name
and a → domain.

Syn. property (en).

Note: Each → object of a → class likewise contains a → data element of an attribute with an
individual → value. Graphically an attribute corresponds to the column of a → table.

Attribute specialization

Restriction of the → domain of an → attribute.

Note: Attribute specialization is also employed when defining → inheritance relationships.

Basic class

Ambiguous syn. for → super class and → view base class.

Basic data type

Predefined → value domain such as TEXT or BOOLEAN (cf. INTERLIS 2.8).

Basic view

→ View whose → objects contribute to the set-up of a new → view.

Basket

Collection of → objects that belong to a → topic or to its → extensions.

Bi-directional association

Def. cf. → association.

Boundary of a surface

Set of all boundary points of a → surface.

Cardinality

Number of → objects of → class B (resp. A) which can be assigned to an → object of → class A
(resp. B) through the → relationship between the → classes A and B.

Syn. multiplicity.

Note: In → UML the term → multiplicity is also employed; in which case "cardinality" means the
concrete number of → object relationships between → object instances.

Cartesian coordinate system

→ Coordinate system of the Euclidic → space whose axes are straights set perpendicularly and
in pairs.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 166

Cartographic sign system

Set of graphical representation possibilities for → graphic symbols.

Note 1: A concrete → graphic element shown on screen or printed on paper is the result of a
multi-level process whereby → objects are selected (selection), then represented on → graphic
symbols (mapping) and assembled, graphically rendered (rendering) and represented (display).

Note 2: In → INTERLIS 2 the first two levels are determined by means of a → representation
description, all other levels are subject to the implementation of each system resp. "driver", in
some cases certain graphic standards exist such as PostScript, HPGL, OpenGL, Java2D, SVG.

Change database

Temporary → database with whose → objects → amendments can be executed. A change
database receives its → objects from a → primary database and returns them after their
processing (→ update).

Note: A change database may operate on the same → system as the → primary database
(internal change database) or on another → system (external change database).

Class

Set of → objects with the same properties and → operations. Each property is described by an →
attribute, each → operation by a → signature.

Syn. object class, set of entities, object type, feature type, feature.

Note 1: A class described with → INTERLIS 2 corresponds to a UML-class with nothing but
"public", i.e. visible → attributes.

Note 2: Cf. → super class, → subclass, → table as well as → class element.

Note 3: Classes need not necessarily contain → objects. If they do contain → objects we speak of
→ concrete classes, if not of → abstract classes.

Class diagram

Graphic representation of → classes and their → relationships.

Class element

→ Modeling element "of the modeling level class". To be exact: class elements are called →
class, → structure, → association class, → view, → view projection and → graphic definition.

Class interface

Function call of a part or of the entirety of the → operations of a → class.

Syn. program interface, software interface, interface.

Note 1: One → class may have several class interfaces. For each of them a separate → interface
class can be defined. The → conceptual schema of an → interface class consists only of→
signatures.

Note 2: See also → user interface and → data interface.

Class specialization

Restrictions of a → class through additional → attributes, → relationships, → consistency
restraints or → attribute specialization.

Note: Class specializations are used for defining → inheritance relationships.

Complete data transfer

→ Data transfer of a complete → database state from → sender (source) to → receiver (target).

Comportment rule

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 167

Conditions under which on the one hand → messages from a sender system will be received, on
the other hand a → message containing output arguments of the → class interface will be
retransferred to the sender system of the → message including a call of a → class interface.

Composition

Directed → proper relationship between a superior → class and a subordinate → class. Several
parts (sub-objects of the subordinate → class) are assigned to an entirety (super-object of the
superior → class), while there is a maximum of one entirety that can be assigned to one part.
When copying an entirety all assigned parts are copied at the same time. Likewise when deleting
an entirety all assigned parts are also deleted.

Note 1: All parts are dependent; they inalterably form part of the entirety. Thus all → classes
involved do not lead equal → relationships, but form a consists-of hierarchy.

Note 2: In → INTERLIS 2 a composition is defined as an → association class.

Note 3: Cf. → structure attribute.

Conceptual schema

Def. cf. → data schema (note 2).

Syn. conceptual → data schema.

Concrete class

→ Class which can contain → objects.

Note: Cf. → abstract class.

Consistency constraints

Restrictions all → objects must comply with.

Syn. condition, limiting condition, assurance, constraint (en).

Note: Certain consistency constraints are predefined in → INTERLIS 2. Other consistency
constraints can be formally defined by means of → functions, → logical expressions or rules and
are subject to a → contract.

Constraint attribute

→ Attribute, for which a → consistency constraint has been defined.

Constraint class

→ Class, for which a → consistency constraint has been defined.

Constraint

Syn. for → consistency constraint.

Contract

Agreement with software-tool suppliers.

Note: Contracts are e.g. required, i f in INTERLIS 2 data models not predefined → functions, →
symbology models or not predefined → line form types are used.

Conversion

→ Mapping of a → coordinate system (resp. of its → space) to another → coordinate system
(resp. to its → space), strictly defined by formulas and their → parameters.

Note: The term conversion occasionally is used for the reformatting of → transfer files.

Coordinate reference system

Syn. for → reference system.

Coordinate system

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 168

Base of an Euclidic vector space, resp. original base of the assigned Euclidic vector space when
dealing with map homomorphism of a diversity (for details see vector analysis).

Note: From the viewpoint of data a coordinate system is defined by its axes which either are
straights (in → INTERLIS 2 so-called LengthAXIS) or elliptic arcs (so-called AngleAXIS)
depending on the type of → space they permit to measure.

Corner

Not smooth part of a → line string.

CSL

Abbr. for Conceptual Schema Language.

Curve segment

Subset of the → space, it is the image set of a smooth and injective → mapping of an interval of
the numerical straight line.

Syn. line segment.

Data abstraction

Abstracting (amongst others omitting) of unimportant details via data.

Note 1: Separating What? (→ class interface → type) from How? (→ class, concrete
implementation). → generalization and → specialization are possible principles of abstraction.

Note 2: The actual realization of the → operations and the inner structure of the → object or →
structure element are hidden, i.e. characteristics are considered in an abstract way and no
attention is being paid to the actual implementation.

Data catalogue

Syn. for → object catalogue.

Data description

Syn. for → data schema and → data model.

Data description language (DDL)

Formal language for the exact description of data structures.

Syn. Conceptual Schema Language (CSL).

Data element

Def. cf. Informatics, cf. → domain.

Data interface

Program for the reformatting of → transfer files or → protocol for the → data transfer.

Syn. interface.

Note: See also → class interface and → user interface.

Data model

Exact description of a data structure (so-called conceptual → data schema), which is a complete
and self contained unit. From the hierarchy point of view a d. is the highest → modeling element.

Syn. model, data description.

Note 1: Beware! In database theory data model is a common synonym for conceptual formalism
(i.e. a data model is considered as a → method for the creating of a → conceptual schema).

Note 2: A data model consists of at least one → topic.

Note 3: In → INTERLIS 2 described by the key word MODEL. The → package, which
corresponds to this data model, is above all other → packages, which correspond to the → topics
of a data model.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 169

Data schema

Description of content and organization of data characterizing a user-specific facet of reality, as
well as rules governing these and of → operations which can be executed with such data.

Syn. data description, schema, conceptual schema, ontology.

Note 1: Plural: data schemas.

Note 2: Depending on the abstraction level at which the data are described, we distinguish
between the → conceptual schema, the logical schema and the physical schema. When
formulating a data schema we dispose of appropriate → data description languages.

Note 3: When dealing with → databases the logical schema formulated in accordance with the →
conceptual schema and the system specific possibilities of organization, is also called internal
schema. Logical as well as physical schemas of peripheral instruments or exchange files are
often called external schemas or format schemas.

Data transfer

Transfer of data from one → database A to another → database Z. A is known as primary
system, source, → sender, sender system, Z as → target system, → receiver. The delivery of
data to be transferred by → system A is also called export; its acceptance by → system Z is
called import.

Syn. transfer, data transmission.

Data transfer mechanism

(Conceptual) → data description language and (physical) → transfer format as well as rules
governing the derivation of such a → transfer format of a data structure that is described by
means of a → data description language.

Data type

Syn. for → domain.

Database

Logical administration unit for the treatment and long-term memorization of → objects.

Abbr. DB.

Note: It is possible to run several databases on one → system. It is also conceivable that one
database has been divided into several → systems.

Database state

Totality of all data and → relationships of a → database at one given moment. Each database
state has its name.

Note: By means of one or several → amendments a → database is transferred from one
database state to the next (→ update).

Date

Ambiguous syn. for → geodetical date and indication of time (e.g. 2002-06-25).

Date transformation

→ Transformation of a → geodetical date (resp. of the → space defined thereby) on another →
geodetical date (resp. its → space).

Derived attribute

→ Attribute, whose → domain is calculated by means of a function regulation (→ logical
expression, calculation).

Note 1: Derived attributes cannot be altered.

Note 2: In → INTERLIS 2 the function regulation is defined via a → function.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 170

Directed relationship

→ Aggregation or → composition or → reference attribute or → inheritance relationship.

Domain

Set of homogeneous → data elements. A → data element of a domain is called → value.

Syn. data type.

Note 1: Cf. → basic data type.

Note 2: A value can also consist of → structure elements of a → sub-structure.

Domain of a name

→ Namespace of the → name category of this name corresponding to the → modeling element,
in which this name is defined.

Note 1: Within the domain of a name each name may only have one definition/meaning. However
the same name can be defined once within the → namespace of every → name category of the
same → modeling element.

Note 2: The domain of a name is part of the → visibility domain of a name.

Drawing rule

Language element of a → graphic definition. A drawing rule assigns a → graphic symbol to the →
objects) of a → class and determines the corresponding graphic symbol arguments according to
the attribute values (i.e. data) of the → objects.

Syn. symbol attribute.

Element

Fundamental idea of the set theory. A set consists of elements.

Syn. instance.

Note: See also → modeling element or → graphic element.

Ellipsoid coordinate system

→ Coordinate system on the 2-dimensional boundary surface of a 3-dimensional (rotation-)
ellipsoid.

Ellipsoid height

Euclidic distance of a point measured from the ellipsoid along the normal line to surface through
this point.

End point of a curve segment

Picture of the other interval end point with the → mapping which defines the → curve segment.

Entity

Syn. for → object.

Expression

Syn. for → logical expression.

Extension

Syn. for → specialization.

Feature

Syn. for → object, resp. often also for → class.

Feature type

Syn. for → class.

File

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 171

Def. cf. informatics.

Force

Link between parts (sub-objects of the subordinate → class) and the entirety (super object of the
superior → class) in a → proper relationship.

Function

→ Mapping of → value domains of input-parameters into a → value domain of an output -
parameter by means of a calculation-rule (→ parameter).

Note: In → INTERLIS 2 certain functions are predefined, others are subject to a → contract.

General identification

→ Identification for all (modeled) → objects of a → transfer community.

Note: See also → object identification.

General surface

→ Surface with an additional finite number of → singular points however with a continuous →
interior of the surface.

Generalization

→ Role of the → super class in an → inheritance relationship.

Note 1: Generalization is occasionally used as a synonym for → inheritance (even though it
actually means the opposite direction).

Note 2: In cartography generalization describes all activities due to the scaled and reduced →
mapping of real-world → objects.

Geodetical date

3-dimensional → Cartesian coordinate system, whose axes have a fixed position and orientation
as to the center of gravity and the rotation axis of the earth.

Syn. geodetical reference system.

Geodetical reference system

Syn. for → geodetical date.

Geoide

Equipotential surface of the field of gravity.

Note: A geoide supplies a physical earth model that adjusts to the gravity field of the earth. It is of
irregular form since it takes into consideration the irregular mass distribution of the earth. It has to
be imagined as if the average ocean surface were to continue beneath the continents.

GIS

Abbr. for geo-information system or geographical information system.

Graphic definition

→ Class element of a → graphic topic, i.e. each → graphic topic of a → graphic description is a
collection of graphic definitions (not of → classes!). Each graphic definition belongs to a → class
(BASED ON) of the corresponding data-topic, assigns by means of → drawing rules → one or
several → graphic symbols to objects of this → class and determines the → arguments of the →
graphic symbol according to the data of the → objects.

Note: The data of the → graphic symbols, i.e. their names and graphic visualization are
comprised in a → symbol library described in the corresponding → symbology model.

Graphic description

Syn. for → representation description.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 172

Graphic element

Graphic description of an → object taking into consideration its 2-dimensional geometry and
further → attributes of this → object, after possibly necessary processing ready for output by a
suitable peripheral device.

Syn. graphic object.

Graphic model

Syn. for → graphic description.

Graphic object

Syn. for → graphic element.

Graphic parameter

Syn. for → parameter of a → graphic symbol.

Graphic symbol

Data for the graphic representation of an → object still independent of 2-dimensional geometry
and further attribute values of this → object. A → graphic parameter is called → parameter of
graphic symbol.

Syn. symbol, style.

Note 1: There are four types of graphic symbols: (1) text, resp. text symbol (sometimes called text
label or simply label), (2) point symbol (sometimes also called point sign or simply → symbol or
pictogram), (3) line symbol and (4) (single) surface symbol.

Note 2: In → INTERLIS 2 the data structure and possible → parameters of a graphic symbol are
specified within a → symbology model and the corresponding data are stored within a → symbol
library. A graphic symbol is referenced via its graphic symbol-name within a → graphic definition.
Thereby corresponding → arguments for eventual → parameters have to be defined.

Graphic topic

Def. cf. → representation description.

Gravity model

Description of the gravity field of the earth.

Height

Either → ellipsoid height or → normal height or → orthometrical height.

Help line

Linear → graphic element which links two → graphic elements or one → graphic element and a
label.

Note: A typical case of a help line is the representation of a join from a line or surface symbol to a
label or its corresponding measurement line.

IDDL

Abbr. for → INTERLIS Data Description Language (IDDL).

Identification

→ Attribute or combination of attributes whose → value unequivocally determines an → object
within its → class.

Abbr. ID.

Syn. identifier, identity.

Note: Within an INTERLIS-transfer file each → object is assigned an identification in addition to
the attribute values described in the → data schema, thus being unequivocally identified within

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 173

the → transfer file. This is a so-called → transfer identification (→ TID). If such a → TID is a →
general and → stable identification, then it is called an → object identification (→ OID).

Identifier

Syn. for → identification.

Identity

Syn. for → identification.

ILI

Abbr. for → INTERLIS.

Note: Also common as data name extension of → files which contain a → data schema
conceived in → INTERLIS (version 1 and 2).

Implemented class

Executable software module with → operations realized as → methods.

Incremental data transfer

→ Data transfer of the difference between two → states of database from a → sender to a →
target system.

Incremental update

→ Complete or → incremental → data transfer of a → database state of the → primary database
to a → secondary database.

Note 1: An incremental update always proceeds sequentially, i.e. one → secondary database will
never have to receive several incremental updates at the same time.

Note 2: Cf. → synchronization.

Information layer

Non-void set of → topics.

Inheritance

→ Method for the definition of → inheritance relationships between → super classes and →
subclasses. These → methods are → class specialization and → attribute → specialization.

Note 1: → Subclasses correspond to the same idea; they have the same properties as their →
super classes that they specialize.

Note 2: We distinguish between → single inheritance and → multiple inheritance. In the case of a
→ single inheritance (de: Einfachvererbung; fr: héritage singulaire) one → subclass inherits →
only from one direct → super class. In the case of a → multiple inheritance one → class inherits
from several → super classes.

Note 3: → INTERLIS 2 only admits simple inheritance (such as Java).

Inheritance relationship

→ Directed → relationship between a superior → class, called → super class, and a subordinate
→ class, called → subclass, defined by → inheritance. The → role of the → super class is called
→ generalization; the → role of the → subclass is called specialization.

Note 1: The → objects of the → super class are → generalizations of the → objects of the →
subclass. The → objects of the → subclass are restrictions (→ specializations, → extensions) of
the → objects of the → super class.

Note 2: The inheritance relationship is a subset relationship, the → objects of the → subclass
form a subset of the → objects of the → super class. Thus in the case of → objects of the →
subclass we do not deal with new → objects, but with a part or subdivision of the → objects of the

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 174

→ super class. Both → objects of an object pair of the inheritance relationship possess the same
→ OID.

Inner boundary

Subset of the → edge of a → planar surface, it is an interior → simple closed line string.

Instance

Syn. for → element (concrete specimen) of a set (abstraction).

Note: Examples of an instance: A → value is an instance of a → data type. An → object is an
instance of a → class. A → basket is an instance of a → topic. An object pair is an instance of an
→ association class.

Interface

Ambiguous syn. for → class interface, → user interface and → data interface.

Interface class

Def. cf. → class interface.

Syn. class of class interface.

Interior of a surface

Set of all inner points of a → surface.

INTERLIS 2

→ Data t ransfer mechanism for geodata consisting of → INTERLIS Data Description Language
(→ IDDL) and the INTERLIS-XML transfer format (IXML) as well as rules for the derivation of
IXML for a data structure described with → IDDL. → IDDL, IXML and conversion rules are
defined in the Swiss → Standard SN 612031.

Abbr. for "INTER land information systems" (i.e. between → GIS).

INTERLIS-Compiler

Program that derives the description of the corresponding INTERLIS → transfer format from a →
data schema in → IDDL. At the same time the syntactic correctness of the data schema is
examined (so-called parsing), cf. INTERLIS appendix A.

INTERLIS Data Description Language (IDDL)

(Conceptual) → data description language of the → data transfer mechanism INTERLIS.

Note: A → data schema described in → IDDL can be memorized as a text file. For such schema
files it is common to add the abbreviation "ILI" to the file name. Example: The schema file of the
database set of Cadastral Surveying is thus called DM01AV.ILI.

Layer

Within the scope of CAD a common term for the collection of graphic data of a certain → type.
Occasionally used in GIS for → topic.

Layout of the plan

Description of plan by means of → meta data title, → legend, producer description, issue date,
definition of sign type and graphic representation of further → elements such as grid intersections
and north direction.

Syn. layout of the map.

Legend

Labeling and explanation of a map, resp. plan and the → graphic symbol employed therein.

Note: Cf. → graphic description as well as → symbol library.

Line form type

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 175

Form of curves that make up a line string (straights, arcs and other connecting geometries). For
the definition of object geometries supported by → INTERLIS 2, see INTERLIS 2.8.12 and 2.8.13.

Line segment

Syn. for → curve segment.

Line string

Subset of the → space, image set of a continuous and partially smooth (but not necessarily
injective) → mapping (the so-called assigned → mapping) and which only features a finite
number of not-smooth parts (so-called → corners).

Logical expression

Predicates joined by means of Boolean operators.

Syn. expression.

Map frame

Confines the limits within which the contents of a plan are represented.

Note: Towards the exterior edge it is possible to define graded covering regions.

Map projection

→ Conversion of an elliptic or spherical → space into an Euclidic → plane.

Map symbol

Syn. for → graphic symbol.

Mapping

(From space A, defined by a → coordinate system in another space Z, defined by a second →
coordinate system:) Regulation which assigns exactly one point z of Z to each point a of A.

Note: Special cases of mappings are → transformation and → conversion.
Message

Data containing calls for → class interfaces including → arguments for the input resp. data
containing → arguments for the output of → class interfaces.

Metadata

Data dealing with data.

Note: Especially in geo-informatics metadata is data that indicate amongst others object-
descriptions in colloquial language, of → objects, organization, space reference, quality,
availability and origin, etc.

Metamodel

→ Data model of → metadata.

Metaobject

→ Object, whose subject of the real world is a set of → objects.

Note 1: Thus a metaobject consists of → metadata. Metaobjects exist for individual → objects
and/or for all → objects of a → modeling element.

Note 2: → Metadata for the → values of individual → attributes of → objects are additional →
attributes of the → class of these → objects.

Metaobject-names

→ Name category that solely consists of names of → metaobjects.

Method

Implementation of an → operation by a series of instructions (i.e. by a program).

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 176

Note: ambiguous term, often used as synonym for → operation.

Model

Syn for → data model.

Note: The object-oriented modeling distinguishes between object models (as synonym for the
part of a → data schema which describes content and organization of data) and models of
behavior (as synonym for the part of a → data schema which describes → operations that can be
executed with the data).

Model driven approach

Approach which leads from user-specific detail of reality via a → conceptual schema to data and
programs for their processing.

Syn. model driven architecture (en).

Abbr. MDA (en).

Note 1: There are four phases to the model driven approach which lead to the following results:
(1) Description of the real world detail in colloquial language, (2) conceptual, (3) logical, (4)
physical → data schema. Both phases (1) and (2) and their results are system-independent.

Note 2: For the establishment of a → conceptual schema tools such as → UML and → INTERLIS
2 will be used. → INTERLIS 2 also supplies coding rules which permit the deriving of physical →
data schema of a → transfer file (the → transfer format) from a → conceptual schema (in →
INTERLIS 2 → CSL).

Note 3: One of the main advantages of a model driven approach consists in the precise wording,
above all of the → conceptual schema, which then permits communication about and
comprehension of data structure between experts.

Model driven method

Syn. for → model driven approach.

Model driven protocol

→ Protocol whose → class interfaces and → messages are described by means of a (system-
independent) → conceptual schema.

Modeling element

Special → schema element. There are three modeling elements, namely → data model, → topic
and → class element.

Note: Modeling element and → name category define the → namespace.

Multiple inheritance

→ Inheritance relationship that assigns more than one → super class to one → subclass.

Note: Multiple inheritance is not provided in → INTERLIS 2.

Multiplicity

Syn. for → cardinality.

Name category

Subset of the names of a conceptual → data schema. There are three name categories, namely
→ type names, → part names and → metaobject names.

Note: Name category and → modeling element define the → namespace.

Namespace

Set of (unequivocal) names of a → name category in a → modeling element.

Note: The namespace is of importance when determining the → domain and the → visibility
domain of a name.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 177

Normal height (of a point)

Distance between the point and the quasi-geoid.

Note: The normal height is a rigorous height with respect to potential theory. The mean normal
gravity is taken into account.

Object

Data of a real-world object together with the → operations that can be executed with these data
and with an → object identification.

Syn. entity, tuple, object instance, feature, feature instance.

Note 1: Cf. → instance, → class.

Note 2: As opposed to a → value, an object possesses an → identity, exists in time and → space,
can be altered while keeping its → identity and by means of a reference it can be of common use.
An object is concrete. It is tightly connected with the existence of real things.

Note 3: In object-oriented literature we find the following flowery definition of the term object: A
concrete existing unit with its own (unchangeable) → identity and defined limits (in the figurative
sense of the word) which encapsulate state and characteristics. Its state is represented by →
attributes and → relationships, its characteristics by → operations. Each object belongs exactly to
one → class. The defined structure of their → attributes, as well as their characteristics, applies
likewise to all objects of one → class. However the → values of the → attributes are specific for
each object.

Object catalogue

Informal enumeration of → classes with colloquial definitions (name and description of the →
class) of all data objects relevant for one utilization.

Abbr. OC.

Syn. data catalogue.

Note 1: An object cataloque comprises indications concerning degree of detailed description
quality requirements (mainly geometrical quality) as well as rules for recording.

Note 2: An object catalogue is a preliminary and a complement of the conceptual → data model.

Object class

Syn. for → class.

Object identification

→ General and → stable identification.

Syn. object identifier, object identity.

Note 1: Usually the object identification is only altered by a → system and not by a user. An
object identification is a property that distinguishes one → object from all others, even though it
may possess the same attribute values.

Note 2: Cf. → transfer identification.

Note 3: In appendix D of the INTERLIS Version 2-Reference Manual you will find a suggestion for
an object identification.

Object identifier

Syn. for → object identification.

Object identity

Syn. for → object identification.

Object instance

Syn. for → object.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 178

Object relationship

Two → objects assigned to each other by a → relationship between the → classes they belong
to.

Syn. link.

Object type

Syn. for → class.

Official height

Sum of all leveling measurements (height differences) along a leveling run of one point of →
height 0 to a point with wanted G.

OID

Abbr. for → object identification.

Onesided relationship

Syn. for → reference attribute.

Ontology

Syn. for → data schema.

Note 1: Ontology is an "explicit formal specification of a shared conceptualization", i.e. in graphic
terms, a repository of concepts.

Note 2: Ontologies use UML/OCL or their own languages such as DAM/OIL (DARPA Agent
Markup Language + Ontology Interchange Language). Typically ontologies consist of →
conceptual data schema, a taxonomic hierarchy of → classes (vocabulary, thesaurus) and
axioms, which restricts possible interpretations of the defined terms (in most cases with a logic-
language). (In the future) ontologies should be used as higher abstractions of → data schemas
for the specification of software and for the communication between individuals.

Operation

→ Mapping from the attribute domains of a → class and/or from → domains of input-parameters
into the → domain of an output-parameter.

Note 1: The implementation of an operation by means of a series of instructions (i.e. by a
program) is called → method.

Note 2: The description of an operation is called → signature and consists of operation names
and description of the → parameters.

Optional

Not compulsory, need not exist or be applicable. Contrary: mandatory.

Note 1: → Attributes are optional, unless it is stated that they are to be mandatory. For mandatory
→ attributes we dispose of the keyword MANDATORY in → IDDL.

Note 2: In → IDDL the term "not mandatory" refers to the → transfer file.

Orthometric height

Length of curve of the (curved) perpendicular between → geoid and point.

Outer boundary

Subset of the → edge of a → planar surface, the outermost → simple closed line string.

Package

Element of the UML-language for the description of → models, → topics and parts of topics.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 179

Note 1: A package defines a → namespace, i.e. within a package the names of the → schema
elements contained must be unequivocal. Each designated → schema element can be
referenced in a different package, but it belongs to exactly one (source-) package.

Note 2: In the case of → UML packages themselves can contain other packages. The top
package contains the entire system according to the → data model of → INTERLIS 2.

Parameter

Data (elements), whose → values are transmitted to a → function, an → operation or a → meta
object and/or have been returned by → functions or → operations. Each parameter is supplied
with a name, a → domain and - where → functions or → operations are concerned - a t ransfer
direction (in, out, inout). The concrete → value of a parameter is called → argument.

Note 1: Cf. → run time parameter.

Note 2: By means of parameters we describe those properties of → meta objects which do not
concern the → meta object itself, but its use within the application.

Part names

→ Name category consisting of names of → run time parameters, → attributes, → drawing rules,
→ parameters, → roles, → relationship access and → basic views.

Path

Series of names of → attributes and/or → classes and/or → roles of → association classes, which
define an → object or the → value of an → attribute which are to be processed by a → logical
expression.

Planar curve segment

→ Curve segment which is a subset of a → plane.

Planar general surface

→ General surface which is a subset of a → plane.

Planar surface

→ Surface which is a subset of a → plane.

Plane

2-dimensional sub-space of a → space.

Point

(Set) element of the → space (considered as a set).

Polymorphism of objects

Wherever → objects of a → super class are expected it is also possible to have → objects of an
→ extension.

Syn. polymorphy, polymorphism.

Note 1: See also → polymorphism of operations.

Note 2: In → INTERLIS 2 we refer mainly to polymorphism of objects.

Polymorphism of operations

Based upon the → signature it is conceivable that → objects of different → classes respond to
identical operation names (messages), i.e. they are processed by → operations with identical
names.

Syn. polymorphy, polymorphism.

Note 1: See also → polymorphism of objects.

Note 2: In INTERLIS 2 mainly → polymorphism of objects is applied.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 180

Primary database

→ Database that deals with long-term administration of → objects of certain → topics of a certain
field.

Program

Syn. for → method.

Program interface

Syn. for → class interface.

Examples: Java-API or Open Database Connectivity (ODBC).

Program system

Entirety of all → methods of → classes necessary for the processing of an application by means
of electronic data processing.

Propeller set

Union of a finite number of triangular surfaces which have exactly one → point in common, the
centre.

Proper relationship

Def. cf. → relationship.

Property

Syn. for → attribute.

Protocol

Entirety of all → class interfaces → messages and → comportment rules of a set of → systems
which contribute to the solution of an application task.

Receiver

Def. cf. → data transfer.

Syn. target system.

Reference attribute

→ Relationship which is only known to the first → object of each object pair of the → relationship.

Syn. onesided → relationship.

Reference system

→ Coordinate system, appearing at the end of a series of → coordinate systems and →
conversions where exactly one → geodetical date occurs and which stands at the start of the
series.

Referential integrity

Rule, which determines what is to happen with an → object relationship, resp. with the → objects
concerned, if the → objects involved or the → relationship itself is deleted.

Relationship

Set of object pairs (resp. in the general case of object-n-tuples also known as → relationship
objects). The first → object of a pair belongs to a first → class A, the second object to a second
→ class B. The attribution of → objects to such pairs shall be predefined; hence it must only be
described, i.e. modeled. We distinguish between → proper relationship (that is → association, →
aggregation, → composition), → inheritance relationship and → reference attribute.

Note 1: As proved by the view concept, it is on the other hand also possible to calculate such
assignments by means of algorithms, e.g. based upon attribute values.

Note 2: Cf. → object relationship.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 181

Note 3: For a proper relationship both → force and → cardinality are defined.

Relationship access

Conditions and possibilities to refer to → relationship objects and by these means also → objects
of (ordinary) → classes via → paths.

Relationship object

Def. cf. → relationship.

Replicate

To copy whereby the copied → object may not be altered independently of the original.

Note: Term mainly used in connection with → incremental update.

Representation description

→ Conceptual schema, which describes the assignment of → graphic symbols to → objects and
consists of graphic → topics. The → objects can be selected in a → view.

Syn. graphic model, graphic description.

Note 1: A representation description in → INTERLIS 2 consists of graphic → topics each of which
corresponds to a data topic (DEPENDS ON). A graphic → topic is a collection of → graphic
definitions (not of → classes!).

Note 2: The representation description itself can also contain → data schemas (e.g. → classes
which describe text positions).

Role

Significance of the → objects of a → class within a → relationship.

Note: In a → proper relationship the role of each → class involved is described by its name, its →
force and its → cardinality. A → reference attribute describes the role of the → class with this →
attribute. Within an → inheritance relationship roles are implicitly defined.

Run time parameter

→ Parameter whose → value is supplied at run time by a treatment, evaluation or representation
system.

Note: Examples are representation scale, → date.

Schema

Syn. for → data schema.

Schema element

Partial schema of a conceptual → data schema that possesses a name.

Note: All → modeling elements are schema elements.

Secondary database

Copy of the → database state of a → primary database.

Note: Usually a secondary database cannot be found on the same → system as the → primary
database.

Sender

Def. cf. → data transfer.

Set of entities

Syn. for → class.

Sign

Letter or digit or blank or punctuation mark or symbol.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 182

Signature

Describing the call of an → operation, consisting of the name of the → operation, its → data types
and possible names of their → parameters and possibly indication of a return-data type.

Simple closed line string

→ Line string whose assigned → mapping is injective, with the exception of its → start point and
→ end point which coincide.

Simple inheritance

Def. cf. → inheritance.

Simple line string

→ Line string whose assigned → mapping is also injective.

Singular point

→ Point which, together with its environment can be deformed into a planar → propeller set, the
point itself being at its centre.

SN

Abbr. for Swiss → Norm.

Software interface

Syn. for → class interface.

Space

3-dimensional Euclidic space.

Specialization

→ Role of the → subclass of an → inheritance relationship, often also synonym for → inheritance.

Syn. extension.

Note 1: Cf. → class specialization und → attribute specialization.

Note 2: Since more text will be necessary for the description of a → class or → attribute
specialization than for → the super class or the original attribute, we often rather speak of →
extension than of specialization.

Stable identification

→ Identification which is independent of time, i.e. it cannot be altered during the life cycle of an →
object. Once an → object has been deleted, its stable identification no longer can be used.

Note: Cf. → object identification.

Standard

A 'de jure' standard (or short standard) is a technical regulation laid down by national or
international committees for standardization. A 'de facto' standard is a generally acknowledged
and majority used technical regulation, but less binding than a 'de jure' standard.

Note 1: A law is a regulation superior to both 'de jure' and 'de facto' standards.

Note 2: German synonym for 'de facto' standard is "standard". In English standard is used for 'de
facto' or 'de jure' standards.

Starting point of a curve segment

Representation of one of the interval end points when establishing the → mapping defining the →
curve segment.

String

Succession (i.e. ordered set) of → signs.

Structure

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 183

Set of → structure elements with the same properties and → operations. Only such → operations
are permitted which will not alter the data of the → structure elements. Each property is described
by an → attribute, each → operation by its → signature.

Note 1: Structures occur either within LIST- or BAG-attributes (→ substructure) or exist only
temporarily as the result of → functions.

Note 2: Cf. → class element.

Structure attribute

→ Attribute with the INTERLIS 2-data type BAG or LIST.

Note: As opposed to the definition of a → composition by means of the → association class, with
a structure attribute → structure elements cannot be referenced, i.e. outside of the → object to
whose structure attribute value they belong to, they have no identity.

Structure element

Data of an object of the real world with → operations that could be executed with these data,
however without permission to alter them, and without → object identification.

Note: A structure element is the → instance of a → structure.

Structured domain

INTERLIS 2 language element for the description of compound → attributes such as → date or
time.

Subclass

Def. cf. → inheritance relationship.

Substructure

→ Domain that has been defined by means of a → structure.

Note: Cf. → structure attribute.

Super class

Def. cf. → inheritance relationship.

Surface

Union F of a finite number of → surface elements which is continuous and complies with the
following condition: for every → point P of the surface there exists an environment which can be
deformed into a planar polygon (i.e. permits homeomorph mapping). If in the course of such a
deformation → point P should be placed in the boundary of the polygon, it becomes a boundary
point of F, otherwise it remains an inner point of F.

Surface element

A surface element is a subset of the → space, which is the image set of a smooth and injective →
mapping of a planar regular polygon.

Symbol

Ambiguous syn. for → graphic symbol, language symbol or semiotic symbol.

Symbology

Subset of elements of a → cartographic sign system consisting of → graphic symbols, fonts,
diagrams, half-tones.

Note: Cf. → symbol library.

Symbol attribute

Syn. for → drawing rule.

Symbol library

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 184

Collection of → graphic symbols, structured according to a → symbology model.

Note 1: A symbol library always is a → basket, i.e. an XML-file.

Note 2: In most cases a symbol library is a concrete, user-specific collection of → graphic
symbols.

Symbology model

→ Conceptual → schema which describes the data structure of → graphic symbols and their →
parameters.

Note 1: Symbology models always demand → contracts.

Note 2: In appendix J of the INTERLIS Version 2-Reference Manual you will find a suggestion for
an extended symbology model.

Note 3: Cf. → symbol library.

Symbol object

Syn. for → graphic symbol.

Synchronization

Automatic and regular adjustment of the → database states of two → databases.

System

Totality of all components (hardware and software) forming a data processing-system and being
put to a certain use.

Table

→ Class for whose → objects it is impossible to explicitly define → operations.

Target system

Syn. for → receiver.

TID

Abbr. for → transfer identification.

Topic

Set of → classes whose data in a certain sense belong together, e.g. they have a relationship,
belong to the same data processing authority or possess a similar rhythm of updates. →
Instances of topics are → baskets (recipients).

Note 1: In → UML, a → topic is described by a → package beneath a → data model described,
with the additional significance that this → package (a) possesses its own → namespace and (b)
may depend (be an extension) of other → packages. A UML-package, assigned to a topic, may
contain other (nested) → packages.

Note 2: Beware: With → layer, in CAD terms a commonly used expression for "surface", we mean
a collection of graphic data. A topic may comprise several (graphic) → layers plus additional
structured thematic data.

Transfer

Syn. for → data transfer.

Transfer community

Community of → senders and → receivers who both participate in a → data transfer.

Transfer file

→ File prepared for → data transfer → in an appropriate → transfer format.

Transfer format

System of data fields within a transfer file.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 185

Syn. format.

Transfer identification

Def. cf. → identification.

Abbr. TID.

Transformation

→ Mapping from one → coordinate system (resp. from its → space) to another → coordinate
system (resp. to its → space), where the mapping regulation (formula) is based on hypotheses
and the → parameters are established by means of mostly statistical analysis of measurements
in both → coordinate systems.

Tuple

Syn. for → object.

Type

Ambiguous syn. for → data type (i.e. → domain), → class interface, and → signature.

Type name

→ Name category consisting of → topics → classes, → associations, → views, → graphic
definitions, → baskets, → units, → functions, → line form types, → domains, → structures.

UML

Abbr. for Unified Modeling Language.

Def. cf. www.omg.org/.

Unit

Basic element of a measuring scale (examples: meters, seconds).

Update

One or several → amendments on a → primary database. By means of an update the → primary
database is transferred from one → database state to the next.

Note: Several → amendments on the → primary database may occur parallel at the same time. In
the case of parallel → amendments, the → primary database must guarantee the consistency of
the result.

User interface

Graphic interface of a computer program.

Syn. interface, graphic user interface.

Note: See also → class interface and → data interface.

Value

→ Data element of a → domain.

Vertex

Syn. for → corner.

View

→ Class whose → objects are created by combining and selecting (to be exact by → view
operations) → objects of other → classes or views.

Note 1: → Objects of a view are not "original" in the sense that they do not directly correspond to
a real world object. Thus a view is sort of a virtual → class.

Note 2: Cf. → class element.

View base class

http://www.omg.org/
http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix K Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 186

→ Vlass whose → objects participate in the forming of a → view.

View operation

Regulation for the definition of a new → object from the → objects of → view base classes, resp.
→ basic views.

Note: View operations of → INTERLIS 2 are projections, joins, unions, aggregations and
inspections. Subsequently the object set can be restricted by means of selections.

View projection

→ Class whose → objects are determined by complementing → attributes selected from →
objects of another → class, → view or view projections. In particular it is possible to define further
(virtual) → attributes whose → values are determined by → functions.

Note 1: → Extensions of view projections are possible. However their → objects will always
remain subsets of the object-set of the → basic class, → basic view or basic view projection.

Note 2: Cf. → class element.

Visibility domain of a name

Set of all → namespaces out of which the name may be referenced in an unqualified manner.
The visibility domain of the name consists of its definition domain and of the → namespaces of its
→ name category in all → modeling elements that hierarchically are subordinated to the modeling
element of its definition domain.

Note: Besides the → namespace of its definition domain a name can be newly defined in each →
namespace of its visibility domain. Thus this → namespace will become the new → domain of a
name. This new definition domain and its assigned visibility domain "override" part of the original
visibility domain in so far as in this subdomain (which forms a subtree of the modeling element-
hierarchy) only the new definition/ meaning of the name will apply.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix L Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 187

Appendix L (informative) Index

A
ABSTRACT ... 24, 25, 26, 28, 30, 31, 34, 36, 37, 41, 43, 48,

54, 55, 57, 65, 67, 69, 70, 80, 81, 92, 93, 94, 130, 133,
150, 157, 158, 159, 160

ACCORDING ... 25, 70, 72
AGGREGATES .. 25, 61, 62, 65
Aggregation .. 66, 67
AGGREGATION ... 25, 65, 67
Alias ... 78
AlignmentType ... 37, 40
ALL 25, 39, 59, 61, 63, 67, 85, 112
AND .. 25, 60, 61
ANY .. 25, 29, 44, 45, 92
ANYCLASS .. 25, 32, 62, 63, 64, 93
ANYSTRUCTURE 25, 32, 33, 62, 63, 64, 66, 93, 94
ARCS 25, 47, 49, 92, 127, 128, 157, 158
ArcSegment ... 88, 89
AREA 25, 49, 53, 54, 58, 59, 66, 67, 75, 86, 89, 90, 127,

128
Argument .. 61
ArgumentType .. 63
AS .. 25, 28, 29, 30, 34
ASSOCIATION 25, 30, 33, 34, 68, 101, 128, 133, 149, 150,

151, 159, 160, 161, 162
AssociationDef ... 28, 34
AssociationPath .. 61
AssociationRef ... 32, 34
AT .. 25, 27, 70, 71, 72, 80, 81, 92, 101, 102, 112, 128, 130,

132, 140, 148, 156, 157, 158
Attribute .. 84, 85, 86, 88
ATTRIBUTE 25, 30, 34, 45, 57, 64, 67, 87, 93, 112, 162
AttributeDef .. 30, 31, 34, 67
AttributePath .. 45, 59, 61, 69, 70
AttributePathConst ... 37, 45
AttributePathType ... 37, 45
AttributePathTypeValue ... 86, 87
AttributeRef .. 61
ATTRIBUTES ... 25, 49, 101
AttributeValue ... 86
AttrType .. 31, 32
AttrTypeDef .. 31, 45, 57, 58, 63

B
BAG 8, 25, 31, 32, 33, 58, 59, 62, 64, 65, 66, 75, 86, 88, 93,

133
BagValue .. 86, 88
BASE .. 25, 67
BaseAttrRef .. 42
BASED .. 25, 42, 43, 68, 69, 71, 94, 112, 113, 132, 140, 148
BaseExtensionDef .. 65, 67
BaseType ... 37
Basket .. 83
BASKET 25, 28, 43, 56, 71, 72, 94, 112, 140, 156
BINARY .. 25, 45
BLACKBOX .. 25, 45, 87
BlackboxType ... 37, 45
BlackboxValue ... 86, 87

BOOLEAN 25, 40, 64, 68, 87, 92, 93, 132, 133, 159, 161
BooleanType .. 37, 40
Boundaries ... 89, 90
Boundary .. 89, 90
BY ... 25, 67

C
Cardinality ... 31, 34
CARDINALITY .. 25, 34
CIRCULAR .. 25, 39, 41, 42, 43, 44, 94, 101, 132, 140, 148,

157, 158
CLASS . 7, 23, 24, 25, 29, 30, 43, 45, 57, 58, 59, 68, 70, 71,

72, 80, 81, 87, 93, 101, 102, 127, 128, 133, 140, 148, 149,
156, 157, 158, 159, 160, 161, 162

ClassConst ... 37, 45
ClassDef ... 24, 27, 28, 30
ClassOrAssociationRef ... 32, 60
ClassOrStructureDef ... 30
ClassOrStructureRef ... 30, 32, 45
ClassRef ... 30, 32, 57, 69
ClassType ... 37, 45
ClassTypeValue ... 86, 87
ClippedBoundaries ... 89, 90
ClippedSegment ... 88, 89
CLOCKWISE .. 25, 42
Comment .. 77, 78, 79
ComposedUnit .. 55
CondSignParamAssignment ... 69
Constant ... 37, 61, 70
CONSTRAINT 25, 58, 59, 60, 66, 95, 133, 149, 150, 161
ConstraintDef .. 30, 34, 59, 60, 65
CONSTRAINTS .. 25, 60, 128
ConstraintsDef .. 28, 60
CONTINUOUS 25, 31, 43, 94, 132, 148
CONTRACTED .. 25, 27, 70, 71, 72, 92, 112, 130, 132, 140,

157, 158
ControlPoints .. 49
COORD 25, 44, 70, 75, 88, 91, 92, 101, 128, 156, 157, 158
CoordinateType .. 37, 44
CoordValue ... 86, 88
COUNTERCLOCKWISE 25, 42, 140, 157, 158

D
DataSection .. 77, 83
Dec ... 24, 26, 42, 49, 59
DecConst .. 42, 55
DEFINED .. 25, 60, 61
Definitions ... 28
Delentry .. 78, 83
DeleteObject ... 83, 84
DEPENDS 25, 28, 29, 32, 71, 112, 128, 140
DERIV ED .. 25, 34, 68
DerivedUnit ... 55
Digit .. 23, 24
DIRECTED ... 25, 47, 49, 66, 94
DOMAIN .. 25, 36, 37, 38, 39, 40, 41, 43, 44, 45, 68, 70, 71,

92, 94, 101, 132, 147, 148, 156, 157, 158

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix L Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 188

DomainDef ... 27, 28, 37
DomainRef 28, 30, 32, 34, 37, 39, 42, 49
Draw ingRule ... 68, 69

E
EmbeddedLink ... 84, 85
EmbeddedLinkStruct .. 85
END 25, 27, 28, 30, 33, 34, 43, 48, 57, 58, 59, 60, 65, 66,

68, 69, 70, 71, 72, 73, 80, 81, 93, 94, 95, 101, 102, 112,
113, 127, 128, 129, 131, 132, 133, 140, 148, 149, 150,
151, 156, 157, 158, 159, 160, 161, 162

Entries .. 78
EnumAssignment ... 70
EnumElement ... 39
Enumeration ... 39
EnumerationConst .. 37, 39, 70
EnumerationType ... 37, 39
EnumRange ... 70
ENUMTREEVAL .. 25, 63, 64, 93
EnumTreeValueType ... 37, 39
ENUMVAL .. 25, 63, 64, 93
EnumValue ... 86, 87
EQUAL ... 25, 67
EXISTENCE ... 25, 59
ExistenceConstraint ... 58, 59
Explanation .. 24, 27, 55, 63
Expression ... 59, 60, 61, 67, 69
EXTENDED ... 24, 25, 26, 28, 30, 31, 33, 34, 36, 43, 57, 65,

67, 69, 72, 81, 93, 94, 102, 133, 148, 149, 161, 162
EXTENDS 25, 26, 28, 30, 33, 34, 36, 37, 39, 41, 43, 48, 54,

55, 56, 57, 65, 69, 70, 72, 80, 81, 92, 93, 94, 102, 128,
130, 131, 132, 133, 140, 148, 149, 150, 157, 158, 159,
160

EXTERNAL 15, 25, 32, 34, 36, 128

F
Factor 31, 34, 60, 61, 63, 67, 69, 70
FINAL . 24, 25, 26, 28, 30, 31, 34, 37, 38, 39, 40, 48, 56, 57,

65, 67, 69, 92, 94
FIRST ... 25, 61, 66, 95
Float ... 24
FORM ... 25, 50, 89, 92
FORMAT .. 25, 42, 43, 94, 132, 148
FormatDef .. 42
FormationDef ... 65, 66
FormattedConst .. 37, 42
FormattedType ... 37, 42
FormattedValue .. 86, 87
FROM ... 25, 34, 68
FUNCTION 25, 55, 63, 64, 68, 93, 131, 132, 133
FunctionCall ... 61
FunctionDef .. 27, 28, 63

G
GlobalUniqueness .. 59
GRAPHIC 25, 30, 69, 71, 72, 112, 113, 140
GraphicDef ... 28, 69
GraphicRef ... 69

H
HALIGNMENT .. 25, 40, 87, 92, 157
HeaderSection ... 77, 78
HexDigit .. 23, 24

HIDING ... 25, 34, 36

I
IMPORTS 25, 27, 28, 71, 72, 80, 81, 102, 112, 128, 132,

140, 156, 158
IN .. 25, 49, 59, 70, 72
INHERITANCE ... 25, 42, 43, 94
InnerBoundary .. 89, 90
Inspection ... 61, 62, 66, 67
INSPECTION 25, 53, 61, 66, 67, 112
INTERLIS 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 25,

26, 27, 28, 30, 36, 37, 38, 43, 50, 54, 56, 57, 66, 70, 91,
92, 95, 101, 102, 112, 124, 125, 127, 130, 132, 133, 136,
138, 139, 140, 143, 147, 148, 157, 158

INTERLIS2Def .. 26
IntersectionDef ... 49

J
Join ... 66
JOIN ... 25, 65, 66, 68

L
LAST .. 25, 61
Letter .. 23
LINE ... 25, 49, 50, 89, 92, 101
LineAttr ... 88, 89, 90
LineAttrDef .. 49, 53
LineForm .. 49
LineFormSegment .. 89
LineFormType .. 49
LineFormTypeDef ... 27, 50
LineType ... 37, 49
Link ... 83, 84
LIST 8, 25, 31, 32, 33, 57, 58, 62, 66, 75, 86, 88, 93, 94, 95,

149, 159, 160
ListValue ... 86, 88
LNBASE ... 25, 42
LOCAL .. 25, 58, 60
LocalUniqueness .. 59, 60

M
MANDATORY .. 7, 25, 31, 37, 48, 57, 59, 66, 70, 93, 94, 95,

101, 102, 132, 133, 140, 148, 149, 150, 157, 158, 159,
160, 161, 162

MandatoryConstraint .. 59
MetaDataBasketDef .. 27, 28, 56
MetaDataBasketRef .. 56
METAOBJECT 25, 29, 38, 56, 57, 70, 90, 93, 140
MetaObjectRef .. 42, 56, 70
Model .. 78
MODEL 25, 26, 27, 30, 55, 57, 70, 71, 72, 78, 80, 81, 92,

101, 102, 112, 128, 130, 132, 140, 148, 156, 157, 158
ModelDef .. 26, 27
Models .. 78, 79
MTEXT ... 25, 37, 38, 64, 86, 93, 96
MTextValue .. 86

N
Name . 23, 27, 28, 30, 31, 34, 37, 39, 42, 45, 49, 50, 55, 56,

57, 58, 60, 61, 63, 65, 67, 69, 70
NAME ... 25, 38, 57, 86, 90, 92, 93
NO .. 25, 29, 30, 34
NOT .. 25, 60, 133

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix L Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 189

NULL .. 25, 65, 66
Number .. 24
NUMERIC .. 25, 41, 42, 48, 57, 64, 70, 92, 93, 94, 133, 148,

157
NumericConst .. 37, 42
NumericType .. 37, 42, 44
NumericValue ... 86, 87

O
Object ... 83, 84
OBJECT ... 25, 63
ObjectOrAttributePath .. 60, 61
OBJECTS 25, 43, 56, 59, 63, 64, 93, 94, 112, 140, 156
OF 25, 27, 31, 39, 43, 45, 46, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 71, 72, 75, 78, 79, 80, 82, 85, 86,
88, 90, 93, 94, 95, 112, 113, 128, 133, 140, 149, 156, 159,
160

OID 17, 20, 25, 28, 29, 30, 32, 34, 44, 45, 75, 76, 83, 84,
85, 92, 100, 124, 125, 126

OIDAttributeValue .. 86, 90
OidSpace ... 78
OidSpaces .. 78, 79
OIDType ... 37, 44
ON 25, 28, 29, 32, 42, 43, 68, 69, 71, 94, 112, 113, 128,

132, 140, 148
OR .. 25, 33, 34, 59, 60, 61, 65, 66
ORDERED ... 25, 34, 39, 40, 71, 92
OTHERS .. 25, 39, 87
OuterBoundary ... 89, 90
OVERLAPS 25, 48, 49, 101, 127, 128

P
PARAMETER 25, 30, 56, 57, 58, 61, 69, 70, 72, 93, 133,

140, 148, 157, 158, 161, 162
ParameterDef ... 30, 57
PARENT ... 25, 61, 62
PathEl ... 61
PI .. 25, 42, 101, 131, 148, 157, 158
PlausibilityConstraint .. 58, 59
POLYLINE . 25, 47, 49, 66, 75, 86, 88, 91, 94, 101, 157, 158
PolylineValue ... 86, 88, 90
PosNumber .. 24, 34, 38, 42, 44, 61
Predicate .. 60
Projection ... 66
PROJECTION .. 25, 65, 66
Properties . 24, 28, 29, 30, 31, 32, 34, 36, 37, 56, 57, 65, 67,

68, 69

R
REFERENCE 7, 25, 32, 90, 159, 160
ReferenceAttr ... 32
ReferenceAttribute ... 88, 90
RefSys .. 42, 57
REFSYSTEM .. 25, 26, 27, 43, 55, 56, 57, 93, 94, 132, 148,

156
Relation .. 60
RenamedView ableRef .. 34, 66, 67
REQUIRED .. 25, 49, 59
RestrictedClassOrAssRef 32, 34, 61, 63
RestrictedClassOrStructureRef .. 32
RestrictedStructureRef ... 31, 32
RESTRICTION 25, 32, 33, 34, 45, 64, 93, 159
Role .. 84, 85
RoleDef .. 34

ROTATION 25, 44, 71, 101, 156, 158
RotationDef ... 44
RunTimeParameterDef ... 27, 58

S
Scaling .. 24
SegmentSequence ... 88, 89
Selection ... 65, 67, 69
SET .. 25, 58, 59, 60
SetConstraint .. 59, 60
SetOrderPos ... 83, 86
SIGN ... 25, 56, 70, 71, 72, 112, 140
SignParamAssignment ... 69, 70
StartSegment .. 88, 89
STRAIGHTS 25, 47, 49, 92, 101, 127, 128, 157, 158
StraightSegment ... 88, 89
String .. 23, 27, 38, 42
STRUCTURE 25, 30, 43, 45, 48, 57, 59, 63, 64, 66, 75, 86,

87, 88, 93, 94, 95, 101, 132, 148, 159, 160
StructureDef ... 27, 28, 30
StructureRef ... 30, 32, 42
StructureValue .. 86, 88, 89
SUBDIVISION 25, 31, 43, 94, 132, 148
SURFACE 25, 49, 53, 54, 58, 59, 64, 75, 86, 89, 90, 91, 93,

101, 157, 158
SurfaceValue .. 86, 89, 90
SYMBOLOGY 25, 26, 27, 55, 70, 72, 140, 157, 158

T
Tagentry ... 78, 82
Term ... 60
Term1 ... 60
Term2 ... 60
TEXT 25, 36, 37, 38, 45, 58, 64, 70, 71, 81, 86, 92, 93, 101,

128, 148, 149, 151, 156, 157, 158, 159, 160
TextConst ... 37, 38
TextType ... 37, 38, 44
TextValue ... 86
THATAREA .. 25, 61, 62, 66
THIS ... 25, 61, 62
THISAREA .. 25, 61, 62, 66
TO .. 7, 25, 32, 33, 90, 159, 160
TOPIC ... 25, 28, 30, 65, 70, 71, 72, 75, 80, 81, 83, 93, 101,

102, 112, 127, 128, 133, 140, 148, 156, 157, 158
TopicDef ... 27, 28
TopicRef ... 28, 56
Transfer 74, 75, 77, 78, 79, 83, 86, 88, 90
TRANSIENT ... 25, 31, 65, 67, 75
TRANSLATION 25, 27, 78, 79, 80, 82
Type ... 32, 37
TYPE .. 25, 26, 27, 92, 130

U
UNDEFINED 25, 37, 59, 61, 64, 67
Union .. 66, 67
UNION .. 25, 65, 67
UNIQUE 7, 25, 57, 58, 59, 93, 127, 128
UniqueEl ... 59, 60, 67
UniquenessConstraint .. 58, 59
UNIT 25, 41, 43, 54, 55, 92, 94, 101, 130, 148, 157, 158
UnitDef ... 27, 28, 55
UnitRef ... 42, 55
UNQUALIFIED ... 25, 27, 28

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

Appendix L Edition 2006-04-13 (english)

www.interlis.ch, info@interlis.ch 190

URI ... 25, 27, 38, 86, 92, 124

V
Valentry .. 78, 82
VALIGNMENT .. 25, 40, 87, 92, 157
VERSION . 25, 27, 80, 81, 92, 101, 102, 112, 128, 130, 132,

140, 148, 156, 157, 158
VERTEX 25, 49, 101, 127, 128, 157, 158
VIEW 25, 28, 30, 65, 68, 75, 83, 112
ViewableRef ... 45, 59, 61, 67, 69
ViewAttributes .. 65, 67
View Def .. 28, 65
View Ref .. 63, 65

W
WHEN .. 25, 70, 72

WHERE 25, 59, 60, 67, 68, 69, 72, 112, 113
WITH 25, 49, 101, 127, 128, 157, 158
WITHOUT 25, 48, 49, 101, 127, 128

X
XML .. 45
XML-Any ... 76, 87
XML-base64Binary ... 76, 87
XML-ID ... 76, 83, 84, 85, 86, 90
XML-NcName ... 76
XML-NormalizedString 76, 77, 86, 87
XML-String .. 76, 77, 79, 86
XML-Value .. 76, 78, 79, 83, 84
XML-ValueDelimiter .. 76

The index features the reserved words in capitals (cf. chapter 2.2.7 Special symbols and reserved words),
the syntax definitions of the description language in ordinary script (cf. chapter 2 Description language)
and the syntax definitions of the transfer in italics (cf. chapter 3 Sequential t ransfer). The page number
printed in bold indicates the passage in the reference manual which offers the most comprehensive
definition of a term.

http://www.interlis.ch/
mailto:interlis@swisstopo.ch

	1 Basic principles
	1.1 Overview
	1.2 Utilization of models
	1.3 A structure of models and topics

	Figure 3: Inheritance hierarchy of addresses, persons and buildings.
	1.4 Object concept
	1.4.1 Objects and classes
	1.4.2 Extension of class and polymorphism
	1.4.3 Meta models and meta objects
	1.4.4 Relationships between objects
	1.4.5 Baskets, replication and data transfer

	1.5 View concept
	1.6 Graphic concept
	1.7 Contracts
	1.8 Services, tool capacities and conformity
	1.9 A small example as an introduction
	1.10 How this document is structured

	2 Description language
	2.1 Syntax applied
	2.2 Basic symbols of the language
	2.2.1 Character codes utilized, blanks and line ends
	2.2.2 Names

	HexDigit = (Digit | 'A' | .. | 'F' | 'a' | .. | 'f').
	2.2.3 Strings
	2.2.4 Digits
	2.2.5 Sets of properties
	2.2.6 Explanations

	Explanation = '//' any character except // '//'.
	2.2.7 Special symbols and reserved words

	Table 1: Reserved words in INTERLIS 2.
	2.2.8 Comments
	2.2.8.1 Line comment
	2.2.8.2 Block comment

	2.3 Principal rule
	2.4 Inheritance
	2.5 Models, topics, classes
	2.5.1 Models
	2.5.2 Topics
	2.5.3 Classes and structures
	2.5.4 Namespaces

	2.6 Attributes
	2.6.1 General comments concerning attributes
	2.6.2 Attributes with domain as type
	2.6.3 Reference attributes
	2.6.4 Structure attributes

	2.7 Proper relationships
	2.7.1 Description of relationships
	2.7.2 Force of relationship
	2.7.3 Cardinality
	2.7.4 Ordered relationships
	2.7.5 Relationship access

	2.8 Domains and constants

	DOMAIN
	2.8.1 Strings

	 NAME (FINAL) = TEXT*255; !! ATTENTION: according to chapter 2.2.2 Names
	2.8.2 Enumerations

	DOMAIN
	#red.dark_red #red.orange #red.crimson #yellow #green.light_green #green.dark_green
	DOMAIN
	DOMAIN
	2.8.3 Text orientation
	2.8.4 Boolean
	2.8.5 Numeric data types

	DOMAIN
	 Angle1 = 0.00 .. 359.99 CIRCULAR [degree]; !! correct
	DOMAIN
	2.8.6 Formatted domains
	2.8.7 Date and time
	2.8.8 Coordinates
	2.8.9 Domains of object identifications
	2.8.10 Blackboxes
	2.8.11 Domains of classes and attribute paths
	2.8.12 Line strings
	2.8.12.1 Geometry of the line string
	2.8.12.2 Line strings with straight line segments and circle arcs as predefined curve segments
	2.8.12.3 Other forms of curve segments

	2.8.13 Surfaces and tessellations
	2.8.13.1 Geometry of surfaces
	2.8.13.2 Surfaces
	2.8.13.3 Surfaces of a tessellation
	2.8.13.4 Extensibility

	2.9 Units
	2.9.1 Base units
	2.9.2 Derived units

	UNIT
	2.9.3 Combined units

	UNIT
	2.10 Dealing with meta objects
	2.10.1 General comments concerning meta objects
	2.10.2 Parameters
	2.10.2.1 Parameters for reference and coordinate systems
	2.10.2.2 Parameters of symbols

	2.10.3 Reference systems

	2.11 Run time parameters
	2.12 Constraints
	2.13 Expressions
	2.14 Functions
	2.15 Views
	2.16 Graphic descriptions

	3 Sequential transfer
	3.1 Introduction
	3.2 General rules for the sequential transfer
	3.2.1 Derivation from the data model
	3.2.2 Reading of extended models
	3.2.3 Organization of a transfer: Preliminaries
	3.2.4 Transferable objects
	3.2.5 Order of objects within the data domain
	3.2.6 Coding of objects
	3.2.7 Transfer-types

	3.3 XML-coding
	3.3.1 Introduction
	3.3.2 Symbol coding
	3.3.3 General structure of a transfer file
	3.3.4 Header section
	3.3.4.1 Information concerning the structure of object identifications
	3.3.4.2 Significance and contents of the Alias-table

	3.3.5 Data section
	3.3.6 Coding of topics
	3.3.7 Coding of classes
	3.3.8 Coding of views
	3.3.9 Coding of relationships
	3.3.9.1 Embedded relationships
	3.3.9.2 Non-embedded relationships

	3.3.10 Coding of graphic definitions
	3.3.11 Coding of attributes
	3.3.11.1 General rules for the coding of attributes
	3.3.11.2 Coding of strings
	3.3.11.3 Coding of enumerations
	3.3.11.4 Coding of numeric data types
	3.3.11.5 Coding of formatted domains
	3.3.11.6 Coding of blackboxes
	3.3.11.7 Coding of class types
	3.3.11.8 Coding of attribute path types
	3.3.11.9 Coding of structure attributes
	3.3.11.10 Coding of ordered and not-ordered substructures
	3.3.11.11 Coding of coordinates
	3.3.11.12 Coding of line strings
	3.3.11.13 Coding of surfaces and tessellations
	3.3.11.14 Coding of references
	3.3.11.15 Coding of meta objects
	3.3.11.16 Coding of the OIDType

	3.4 Application of XML-tools

	Appendix A (normative) The internal INTERLIS-data model
	Appendix B (normative for CH) Symbol table
	Appendix C (informative) A small example Roads
	Figure 27: Graphic generated from graphic and data descriptions.
	Appendix D (standard extension suggestion)Organization of object identifiers (OID)
	Postfix = { Letter | Digit }. !! sequence of 8 characters
	Appendix E (standard extension suggestion)Uniqueness of user keys
	 CLASS Allotment =
	 Geometry: AREA WITH (STRAIGHTS, ARCS) VERTEX CHCoord
	 UNIQUE
	END Property.
	 CLASS Allotment =
	 UNIQUE
	 VERSION "2005-06-16" =
	 TOPIC Property =
	 CLASS Allotment =
	 WITHOUT OVERLAPS > 0.005;
	 END Allotment;
	 END Property;
	END Federation.
	 VERSION "2005-06-16" =
	 TOPIC OrgStructure =
	 CLASS County =
	 UNIQUE
	 END OrgStructure;
	 TOPIC Property EXTENDS Federation.Property =
	 END Property;
	END CantonA.
	Appendix F (standard extension suggestion)Definition of units
	Appendix G (standard extension suggestion)Time definitions
	Appendix H (standard extension suggestion) Colour definitions
	Figure H.4: The colorspace L*C*abh*ab functions with polar coordinates onto L*a*b*.
	Figure H.5: Calculation of color differences in the Cartesian L*a*b*-space.
	Appendix I (standard extension suggestion) Coordinate systems and coordinate reference systems
	Appendix J (standard extension suggestion)Symbology models
	Appendix K (informative) Glossary
	Common abbreviations, abbreviation of technical terminology see definitions
	Definitions

	Appendix L (informative) Index

